Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acid-degradable lipid nanoparticles enhance the delivery of mRNA

Abstract

Lipid nanoparticle (LNP)–mRNA complexes are transforming medicine. However, the medical applications of LNPs are limited by their low endosomal disruption rates, high toxicity and long tissue persistence times. LNPs that rapidly hydrolyse in endosomes (RD-LNPs) could solve the problems limiting LNP-based therapeutics and dramatically expand their applications but have been challenging to synthesize. Here we present an acid-degradable linker termed ‘azido-acetal’ that hydrolyses in endosomes within minutes and enables the production of RD-LNPs. Acid-degradable lipids composed of polyethylene glycol lipids, anionic lipids and cationic lipids were synthesized with the azido-acetal linker and used to generate RD-LNPs, which significantly improved the performance of LNP–mRNA complexes in vitro and in vivo. Collectively, RD-LNPs delivered mRNA more efficiently to the liver, lung, spleen and brains of mice and to haematopoietic stem and progenitor cells in vitro than conventional LNPs. These experiments demonstrate that engineering LNP hydrolysis rates in vivo has great potential for expanding the medical applications of LNPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RD-LNPs enhance the delivery of mRNA in multiple organs in vivo.
Fig. 2: ADP (1) enhances the transfection efficiency of LNPs in vitro and in vivo.
Fig. 3: ADA (2) efficiently disrupts endosomes and enhances the transfection efficiency of LNPs in vitro and in vivo.
Fig. 4: ADC (3) degrades into biocompatible products and enhances the transfection efficiency of LNPs in vitro and in vivo.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the Article and its Supplementary Information files. Should any raw data files be needed in another format, they are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Tenchov, R., Sasso, J. M. & Zhou, Q. A. PEGylated lipid nanoparticle formulations: immunological safety and efficiency perspective. Bioconjug. Chem. 34, 941–960 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Müller, S. S. et al. Biodegradable hyperbranched polyether–lipids with in-chain pH-sensitive linkages. Polym. Chem. 7, 6257–6268 (2016).

    Article  Google Scholar 

  3. Kedmi, R., Ben-Arie, N. & Peer, D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials 31, 6867–6875 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Huotari, J. & Helenius, A. Endosome maturation. EMBO J. 30, 3481–3500 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao, W., Chan, J. M. & Farokhzad, O. C. pH-Responsive nanoparticles for drug delivery. Mol. Pharm. 7, 1913–1920 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhuo, S. et al. pH-sensitive biomaterials for drug delivery. Molecules 25, 5649 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shin, J., Shum, P. & Thompson, D. H. Acid-triggered release via dePEGylation of DOPE liposomes containing acid-labile vinyl ether PEG-lipids. J. Control. Release 91, 187–200 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Guo, X. & Szoka, F. C. Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester–lipid conjugate. Bioconjug. Chem. 12, 291–300 (2000).

    Article  Google Scholar 

  9. Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. 51, 8529–8533 (2012).

    Article  CAS  Google Scholar 

  10. Zhang, Y., Sun, C., Wang, C., Jankovic, K. E. & Dong, Y. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 121, 12181–12277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roise, J. J. et al. Acid-sensitive surfactants enhance the delivery of nucleic acids. Mol. Pharm. 19, 67–79 (2022).

    Article  PubMed  Google Scholar 

  12. Yang, X. et al. Making smart drugs smarter: the importance of linker chemistry in targeted drug delivery. Med. Res. Rev. 40, 2682–2713 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu, B. & Thayumanavan, S. S. Substituent effects on the pH sensitivity of acetals and ketals and their correlation with encapsulation stability in polymeric nanogels. J. Am. Chem. Soc. 139, 2306–2317 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991).

    Article  CAS  Google Scholar 

  15. Takahata, Y. & Chong, D. P. Estimation of Hammett sigma constants of substituted benzenes through accurate density-functional calculation of core–electron binding energy shifts. Int. J. Quantum Chem. 103, 509–515 (2005).

    Article  CAS  Google Scholar 

  16. Waggoner, L. E., Miyasaki, K. F. & Kwon, E. J. Analysis of PEG-lipid anchor length on lipid nanoparticle pharmacokinetics and activity in a mouse model of traumatic brain injury. Biomater. Sci. 11, 4238–4253 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, J. et al. Engineering lipid nanoparticles for enhanced intracellular delivery of mRNA through inhalation. ACS Nano 16, 14792–14806 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Coelho, F., Salonen, L. M. & Silva, B. F. B. Hemiacetal-linked pH-sensitive PEG-lipids for non-viral gene delivery. N. J. Chem. 46, 15414–15422 (2022).

    Article  CAS  Google Scholar 

  20. Fang, Y. et al. Cleavable PEGylation: a strategy for overcoming the “PEG dilemma” in efficient drug delivery. Drug Deliv. 24, 22–32 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kozma, G. T., Shimizu, T., Ishida, T. & Szebeni, J. Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv. Drug Deliv. Rev. 154-155, 163–175 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, H. et al. Polyethylene glycol (PEG)-associated immune responses triggered by clinically relevant lipid nanoparticles in rats. NPJ Vaccines 8, 169 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yanez Arteta, M. et al. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc. Natl Acad. Sci. USA 115, E3351–E3360 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kilchrist, K. V. et al. Gal8 visualization of endosome disruption predicts carrier-mediated biologic drug intracellular bioavailability. ACS Nano 13, 1136–1152 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Schmiderer, L. et al. Efficient and non-toxic biomolecule delivery to primary human hematopoietic stem cells using nanostraws. Proc. Natl Acad. Sci. USA 117, 21267–21273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Levetzow, G. V. et al. Nucleofection, an efficient non-viral method to transfer genes into human hematopoietic stem and progenitor cells. Stem Cells Dev. 15, 278–285 (2006).

    Article  Google Scholar 

  27. Vhora, I., Lalani, R., Bhatt, P., Patil, S. & Misra, A. Lipid-nucleic acid nanoparticles of novel ionizable lipids for systemic BMP-9 gene delivery to bone-marrow mesenchymal stem cells for osteoinduction. Int. J. Pharm. 563, 324–336 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Shi, D., Toyonaga, S. & Anderson, D. G. In vivo RNA delivery to hematopoietic stem and progenitor cells via targeted lipid nanoparticles. Nano Lett. 23, 2938–2944 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumar, V. et al. Shielding of lipid nanoparticles for siRNA delivery: impact on physicochemical properties, cytokine induction, and efficacy. Mol. Ther. Nucleic Acids 3, e210 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sakurai, Y. et al. Efficient siRNA delivery by lipid nanoparticles modified with a non-standard macrocyclic peptide for EpCAM-targeting. Mol. Pharm. 14, 3290–3298 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Chander, N., Basha, G., Yan Cheng, M. H., Witzigmann, D. & Cullis, P. R. Lipid nanoparticle mRNA systems containing high levels of sphingomyelin engender higher protein expression in hepatic and extra-hepatic tissues. Mol. Ther. Methods Clin. Dev. 30, 235–245 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ruoslahti, E. Brain extracellular matrix. Glycobiology 6, 489–492 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Dankovich, T. M. et al. Extracellular matrix remodeling through endocytosis and resurfacing of Tenascin-R. Nat. Commun. 12, 7129 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. LoPresti, S. T., Arral, M. L., Chaudhary, N. & Whitehead, K. A. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs. J. Control. Release 345, 819–831 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frohlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 7, 5577–5591 (2012).

    Article  Google Scholar 

  37. Hu, M., Zhou, N., Cai, W. & Xu, H. Lysosomal solute and water transport. J. Cell Biol. 221, e202109133 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zahid, M. U., Ma, L., Lim, S. J. & Smith, A. M. Single quantum dot tracking reveals the impact of nanoparticle surface on intracellular state. Nat. Commun. 9, 1830 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pei, Y. et al. Synthesis and bioactivity of readily hydrolysable novel cationic lipids for potential lung delivery application of mRNAs. Chem. Phys. Lipids 243, 105178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qiu, M. et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 119, e2116271119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, Q. et al. Engineering caveolae-targeted lipid nanoparticles to deliver mRNA to the lungs. ACS Chem. Biol. 15, 830–836 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Landesman-Milo, D. & Peer, D. Toxicity profiling of several common RNAi-based nanomedicines: a comparative study. Drug Deliv. Transl. Res. 4, 96–103 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Sanders, L. M. & Zeisel, S. H. Choline: dietary requirements and role in brain development. Nutr. Today 42, 181–186 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gibellini, F. & Smith, T. K. The Kennedy pathway—de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62, 414–428 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Raghu, G., Nyberg, F. & Morgan, G. The epidemiology of interstitial lung disease and its association with lung cancer. Br. J. Cancer 91, S3–S10 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  46. McAleer, J. P. & Kolls, J. K. Directing traffic IL‐17 and IL‐22 coordinate pulmonary immune defense. Immunol. Rev. 260, 129–144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Muhl, H. et al. IL-22 in tissue-protective therapy. Br. J. Pharmacol. 169, 761–771 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mizoguchi, A. et al. Clinical importance of IL-22 cascade in IBD. J. Gastroenterol. 53, 465–474 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Hwang, S., Feng, D. & Gao, B. Interleukin-22 acts as a mitochondrial protector. Theranostics 10, 7836–7840 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N.M. thanks the California Institute for Regenerative Medicine (CIRM) DISC2-14045, and the NIH for NIAID award number UM1AI164559, co-funded by NHLBI, NIMH, NIDA, NIDDK and NINDS. N.M. also thanks NIH grants UG3NS115599, R33 and R61DA048444-01, R01MH125979-01, funding from the BAKAR Spark award, the Cystic Fibrosis Foundation, the Innovative Genomics Institute, the CRISPR Cures for Cancer Initiative and the Heritage Medical Research Institute. Cryo-TEM data were collected at the Cal-Cryo facility at the University of California, Berkeley Institute for Quantitative Biosciences (QB3). A.E.B. thanks the NIH for funding this work with a Pioneer Award, grant number 1DP1OD029517-01 and J. J. Truchard and the Truchard Foundation. J.E.N. was funded by grant NNF21OC0068675 from the Novo Nordisk Foundation and the Stanford Bio-X Program. A.W. thanks the NIH grant with number 1R21NS133881-01, California Institute for Regenerative Medicine (CIRM) DISC2-14097, Shriners Children’s basic research award 85400-NCA-24. We thank SLAC for SAXS beamtime, and T. Weiss for support during the SAXS experiment. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the NIH, National Institute of General Medical Sciences (P30GM133894). We also thank the Doudna laboratory for help with the HSPCs transfection experiments.

Author information

Authors and Affiliations

Authors

Contributions

N.M., A.W. and H.H. conceived the study and supervised the project. S.Z. and M.S. synthesized compounds. S.Z. performed the characterizations of LNPs. H.H. performed cell culture experiments. H.H., K.G., B.Y., H.S., B.W.B. and A.W. designed and conducted most of the in vivo experiments and data analysis. A.P., J.T., M. G. Collins and Y.-J.C. performed brain editing experiments. H.L. supervised brain editing experiments. B.S.P. performed HSPC transfection experiments. O.H.A. performed the quantum dots/LNPs imaging experiments, and A.M.S. supervised these experiments. A.L., J.E.N. and S.P. performed the SAXS and cryo-TEM experiments, and A.E.B. supervised these experiments. N.M. wrote the paper with contributions from all authors, and N.M., S.Z., H.H. and R.S. finalized and corrected the paper with input from all authors.

Corresponding authors

Correspondence to Hesong Han, Aijun Wang or Niren Murthy.

Ethics declarations

Competing interests

The authors declare the following competing interests: H.H., K.G. and N.M. own equity in Opus Biosciences. All the other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Craig Duvall, Richard Hoogenboom and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Detailed methods of experiments in this paper; Supplementary Schemes 1–6, Figs. 3-1–3-4, 4-1, 5-1, 6-1–6-5, 7-1–7-5, 8-1, 9-1–9-10 and 10-1–10-8, Tables 1–11; NMR spectra of compounds 17; and high-resolution mass spectra of compounds 13.

Reporting Summary

Supplementary Video 1

The movement of quantum dots (QDs) delivered with ADA-LNPs in cell.

Supplementary Video 2

The movement of quantum dots (QDs) delivered with NDA-LNPs in cell.

Supplementary Video 3

The movement of quantum dots (QDs) delivered with Std-LNPs in cell.

Supplementary Data

Statistical source data for supplementary figures.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Gao, K., Han, H. et al. Acid-degradable lipid nanoparticles enhance the delivery of mRNA. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01765-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01765-4

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research