Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Topotaxial mutual-exchange growth of magnetic Zintl Eu3In2As4 nanowires with axion insulator classification

Abstract

Due to quasi-one-dimensional confinement, nanowires possess unique electronic properties, which can promote specific device architectures. However, nanowire growth presents paramount challenges, limiting the accessible crystal structures and elemental compositions. Here we demonstrate solid-state topotactic exchange that converts wurtzite InAs nanowires into Zintl Eu3In2As4. Molecular-beam-epitaxy-based in situ evaporation of Eu and As onto InAs nanowires results in the mutual exchange of Eu from the shell and In from the core. Therefore, a single-phase Eu3In2As4 shell grows, which gradually consumes the InAs core. The mutual exchange is supported by the substructure of the As matrix, which is similar across the wurtzite InAs and Zintl Eu3In2As4 and therefore is topotactic. The Eu3In2As4 nanowires undergo an antiferromagnetic transition at a Néel temperature of ~6.5 K. Ab initio calculations confirm the antiferromagnetic ground state and classify Eu3In2As4 as a C2T axion insulator, hosting both chiral hinge modes and unpinned Dirac surface states. The topotactic mutual-exchange nanowire growth will, thus, enable the exploration of intricate magneto-topological states in Eu3In2As4 and potentially in other exotic compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exchange growth of Zintl Eu3In2As4 shell on WZ InAs core.
Fig. 2: Topotaxial transformation of hexagonal InAs into orthorhombic Eu3In2As4.
Fig. 3: Parameter space for topotactic mutual-exchange growth of Zintl Eu3In2As4 NWs.
Fig. 4: Magnetic characterization of Zintl Eu3In2As4.
Fig. 5: Calculated magneto-topological phase diagram.

Similar content being viewed by others

Data availability

All data are available in the Article or its Supplementary Information.

References

  1. Thelander, C. et al. Nanowire-based one-dimensional electronics. Mater. Today 9, 28–35 (2006).

    Article  CAS  Google Scholar 

  2. Yan, R., Gargas, D. & Yang, P. Nanowire photonics. Nat. Photon 3, 569–576 (2009).

    Article  CAS  Google Scholar 

  3. Yang, P., Yan, R. & Fardy, M. Semiconductor nanowire: what’s next? Nano Lett. 10, 1529–1536 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Ramgir, N. S., Yang, Y. & Zacharias, M. Nanowire-based sensors. Small 6, 1705–1722 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Dasgupta, N. P. et al. 25th anniversary article: semiconductor nanowires—synthesis, characterization, and applications. Adv. Mater. 26, 2137–2184 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, N., Cai, Y. & Zhang, R. Q. Growth of nanowires. Mater. Sci. Eng. R Rep. 60, 1–51 (2008).

    Article  CAS  Google Scholar 

  7. Lu, W. & Lieber, C. M. Semiconductor nanowires. J. Phys. D: Appl. Phys. 39, R387 (2006).

    Article  CAS  Google Scholar 

  8. Güniat, L., Caroff, P. & Fontcuberta i Morral, A. Vapor phase growth of semiconductor nanowires: key developments and open questions. Chem. Rev. 119, 8958–8971 (2019).

    Article  PubMed  Google Scholar 

  9. Kuno, M. An overview of solution-based semiconductor nanowires: synthesis and optical studies. Phys. Chem. Chem. Phys. 10, 620–639 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Serrà, A. & Vallés, E. Advanced electrochemical synthesis of multicomponent metallic nanorods and nanowires: fundamentals and applications. Appl. Mater. Today 12, 207–234 (2018).

    Article  Google Scholar 

  11. Cao, G. & Liu, D. Template-based synthesis of nanorod, nanowire, and nanotube arrays. Adv. Colloid Interface Sci. 136, 45–64 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Fan, H. J., Werner, P. & Zacharias, M. Semiconductor nanowires: from self-organization to patterned growth. Small 2, 700–717 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Dick, K. A. A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III–V nanowires. Prog. Cryst. Growth Charact. Mater. 54, 138–173 (2008).

    Article  CAS  Google Scholar 

  14. Lotgering, F. K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J. Inorg. Nucl. Chem. 9, 113–123 (1959).

    Article  CAS  Google Scholar 

  15. Shannon, R. D. & Rossi, R. C. Definition of topotaxy. Nature 202, 1000–1001 (1964).

    Article  Google Scholar 

  16. Beberwyck, B. J., Surendranath, Y. & Alivisatos, A. P. Cation exchange: a versatile tool for nanomaterials synthesis. J. Phys. Chem. C 117, 19759–19770 (2013).

    Article  CAS  Google Scholar 

  17. Son, D. H., Hughes, S. M., Yin, Y. & Paul Alivisatos, A. Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Moon, G. D., Ko, S., Xia, Y. & Jeong, U. Chemical transformations in ultrathin chalcogenide nanowires. ACS Nano 4, 2307–2319 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Jeong, U., Camargo, C. P. H., Hwan Lee, Y. & Xia, Y. Chemical transformation: a powerful route to metal chalcogenide nanowires. J. Mater. Chem. 16, 3893–3897 (2006).

    Article  CAS  Google Scholar 

  20. Moon, G. D. et al. Chemical transformations of nanostructured materials. Nano Today 6, 186–203 (2011).

    Article  CAS  Google Scholar 

  21. Rivest, B. J. & Jain, K. P. Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem. Soc. Rev. 42, 89–96 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Dloczik, L. & Könenkamp, R. Nanostructure transfer in semiconductors by ion exchange. Nano Lett. 3, 651–653 (2003).

    Article  CAS  Google Scholar 

  23. Schöllhorn, R. Reversible topotactic redox reactions of solids by electron/ion transfer. Angew. Chem. Int. Ed. 19, 983–1003 (1980).

    Article  Google Scholar 

  24. Lou, X. W., Deng, D., Lee, J. Y., Feng, J. & Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 20, 258–262 (2008).

    Article  CAS  Google Scholar 

  25. Kang, J.-H. et al. Au-assisted substrate-faceting for inclined nanowire growth. Nano Lett. 18, 4115–4122 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Childs, A. B., Baranets, S. & Bobev, S. Five new ternary indium-arsenides discovered. Synthesis and structural characterization of the zintl phases Sr3In2As4, Ba3In2As4, Eu3In2As4, Sr5In2As6 and Eu5In2As6. J. Solid State Chem. 278, 120889 (2019).

    Article  CAS  Google Scholar 

  27. Cordier, G., Schäfer, H. & Stelter, M. Sr3In2P4 und Ca3In2As4, Zintlphasen mit Bänderanionen aus kanten-und eckenverknüpften InP4- bzw. InAs4-Tetraedern. Z. Naturforsch. 41b, 1416–1419 (1986).

    Article  CAS  Google Scholar 

  28. Shtrikman, H. et al. Intrinsic magnetic (EuIn)As nanowire shells with a unique crystal structure. Nano Lett. 22, 8925–8931 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Robinson, R. D. et al. Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317, 355–358 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Taha, T. A. et al. Structure, magnetic, opto-electronic and thermoelectric properties of A3In2As4 and A5In2As6 (A = Sr and Eu) Zintl phase compounds. J. Alloy. Compd. 938, 168614 (2023).

    Article  CAS  Google Scholar 

  31. Jiang, J. et al. Negative magnetoresistance in a magnetic semiconducting Zintl phase: Eu3In2P4. Inorg. Chem. 44, 5322–5327 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Riberolles, S. X. M. et al. Magnetic crystalline-symmetry-protected axion electrodynamics and field-tunable unpinned Dirac cones in EuIn2As2. Nat. Commun. 12, 999 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu, Y., Song, Z., Wang, Z., Weng, H. & Dai, X. Higher-order topology of the axion insulator EuIn2As2. Phys. Rev. Lett. 122, 256402 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Sato, T. et al. Signature of band inversion in the antiferromagnetic phase of axion insulator candidate EuIn2As2. Phys. Rev. Res. 2, 033342 (2020).

    Article  CAS  Google Scholar 

  35. Persky, E., Sochnikov, I. & Kalisky, B. Studying quantum materials with scanning SQUID microscopy. Annu. Rev. Condens. Matter Phys. 13, 385–405 (2022).

    Article  Google Scholar 

  36. Payne, A. C. et al. EuSnP: a novel antiferromagnet with two-dimensional, corrugated Sn sheets. J. Alloy. Compd. 338, 229–234 (2002).

    Article  CAS  Google Scholar 

  37. Payne, A. C. et al. Synthesis, magnetic and electronic properties of single crystals of EuMn2P2. J. Solid State Chem. 163, 498–505 (2002).

    Article  CAS  Google Scholar 

  38. Nenno, D. M., Garcia, C. A. C., Gooth, J., Felser, C. & Narang, P. Axion physics in condensed-matter systems. Nat. Rev. Phys. 2, 682–696 (2020).

    Article  Google Scholar 

  39. Wollan, E. O. & Koehler, W. C. Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1–x)La, xCa]MnO3. Phys. Rev. 100, 545–563 (1955).

    Article  CAS  Google Scholar 

  40. Rahn, M. C. et al. Magnetism in the axion insulator candidate Eu5In2Sb6. Phys. Rev. B 109, 174404 (2024).

    Article  Google Scholar 

  41. Ahn, J. & Yang, B.-J. Symmetry representation approach to topological invariants in C2zT-symmetric systems. Phys. Rev. B 99, 235125 (2019).

    Article  CAS  Google Scholar 

  42. Bouhon, A., Lange, G. F. & Slager, R.-J. Topological correspondence between magnetic space group representations and subdimensions. Phys. Rev. B 103, 245127 (2021).

    Article  CAS  Google Scholar 

  43. González-Hernández, R., Pinilla, C. & Uribe, B. Axion insulators protected by C2T symmetry, their K-theory invariants, and material realizations. Phys. Rev. B 106, 195144 (2022).

    Article  Google Scholar 

  44. Kang, J.-H. et al. Crystal structure and transport in merged InAs nanowires MBE grown on (001) InAs. Nano Lett. 13, 5190–5196 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Kang, J.-H., Galicka, M., Kacman, P. & Shtrikman, H. Wurtzite/zinc-blende ‘K’-shape InAs nanowires with embedded two-dimensional wurtzite plates. Nano Lett. 17, 531–537 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Reiner, J. et al. Hot electrons regain coherence in semiconducting nanowires. Phys. Rev. X 7, 021016 (2017).

    Google Scholar 

  47. Tersoff, J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39, 5566–5568 (1989).

    Article  CAS  Google Scholar 

  48. Hammerschmidt, T., Kratzer, P. & Scheffler, M. Analytic many-body potential for InAs/GaAs surfaces and nanostructures: formation energy of InAs quantum dots. Phys. Rev. B 77, 235303 (2008).

    Article  Google Scholar 

  49. Clarke, J. & Braginski, I. A. (eds) The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems Vol. 1 (Wiley, 2004).

  50. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

  53. Souza, I., Marzari, N. & Vanderbilt, D. Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B 65, 035109 (2001).

    Article  Google Scholar 

  54. Wu, Q., Zhang, S., Song, H.-F., Troyer, M. & Soluyanov, A. A. WannierTools: an open-source software package for novel topological materials. Comput. Phys. Commun. 224, 405–416 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

In loving memory of our bright colleague and dear friend, Perla Kacman (1948–2024). We deeply thank M. Fourmansky and I. Boterashvili for their professional assistance in the MBE growth of NWs, M. Huecker in the MPMS3 measurements and S. Rabkin and X. Wang for additional scanning SQUID measurements. L.H. acknowledges support from the Irving and Cherna Moskowitz Center for Nano and Bio-Imaging at the Weizmann Institute of Science. H.S. is an incumbent of the Henry and Gertrude F. Rothschild Research Fellow Chair. B.Y. acknowledges financial support from the European Research Council (ERC Consolidator Grant ‘NonlinearTopo’, no. 815869) and the ISF—Personal Research Grant (no. 2932/21). N.R. and B.K. were supported by European Research Council Grant (no. ERC-2019-COG-866236) and Israeli Science Foundation Grant (no. ISF-228/22). P.K. acknowledges the scientific cooperation project financed by the Polish Academy of Science and the Israel Academy of Science and Humanities. M.Z.-K. was supported by The National Center for Research and Development grant (no. EIG CONCERT-JAPAN/9/56/AtLv-AIGaN/2023). H. Beidenkopf and H.S. acknowledge support from the European Research Council (ERC-PoC TopoTapered—101067680) and the Israel Science Foundation (grant 1152/23).

Author information

Authors and Affiliations

Authors

Contributions

M.S.S., H.S. and H. Beidenkopf conceptualized this research. H.S. and M.S.S. designed and carried out the MBE growths. M.S.S. and L.H. conducted the electron microscopy imaging with EDS analysis and modelling of the interfacial crystal structure. Y.Z., H. Bae and B.Y. performed the DFT calculations and analysed the topological states. N.R. and B.K. performed the scanning SQUID measurements and analysed the data. M.Z.-K. and P.K. provided the results of the molecular dynamics calculations. L.H., B.Y., B.K., H.S. and H. Beidenkopf wrote the manuscript. M.S.S., L.H., H.S. and H. Beidenkopf prepared the figures in the manuscript and Supplementary Information. All authors contributed to the discussion and manuscript preparation.

Corresponding authors

Correspondence to Hadas Shtrikman or Haim Beidenkopf.

Ethics declarations

Competing interests

M.S.S., L.H., H.S. and H.B. are inventors on US provisional patent no. 63/472,598 filed on 13 June 2023 under Yeda Research and Development Co. Ltd. The other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Jean-Christophe Harmand and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–4, Figs. 1–9, Table 1 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, M.S., Houben, L., Zhao, Y. et al. Topotaxial mutual-exchange growth of magnetic Zintl Eu3In2As4 nanowires with axion insulator classification. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01762-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01762-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing