Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A translational framework to DELIVER nanomedicines to the clinic

Abstract

Nanomedicines have created a paradigm shift in healthcare. Yet fundamental barriers still exist that prevent or delay the clinical translation of nanomedicines. Critical hurdles inhibiting clinical success include poor understanding of nanomedicines’ physicochemical properties, limited exposure in the cell or tissue of interest, poor reproducibility of preclinical outcomes in clinical trials, and biocompatibility concerns. Barriers that delay translation include industrial scale-up or scale-down and good manufacturing practices, funding and navigating the regulatory environment. Here we propose the DELIVER framework comprising the core principles to be realized during preclinical development to promote clinical investigation of nanomedicines. The proposed framework comes with design, experimental, manufacturing, preclinical, clinical, regulatory and business considerations, which we recommend investigators to carefully review during early-stage nanomedicine design and development to mitigate risk and enable timely clinical success. By reducing development time and clinical trial failure, it is envisaged that this framework will help accelerate the clinical translation and maximize the impact of nanomedicines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The DELIVER framework for translating nanomedicines to the clinic.

Similar content being viewed by others

References

  1. Park, K. The beginning of the end of the nanomedicine hype. J. Control. Release 305, 221–222 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Bhatia, S. N., Chen, X., Dobrovolskaia, M. A. & Lammers, T. Cancer nanomedicine. Nat. Rev. Cancer 22, 550–556 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Youn, Y. S. & Bae, Y. H. Perspectives on the past, present, and future of cancer nanomedicine. Adv. Drug Deliv. Rev. 130, 3–11 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Leong, H. S. et al. On the issue of transparency and reproducibility in nanomedicine. Nat. Nanotechnol. 14, 629–635 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lammers, T. et al. Cancer nanomedicine: is targeting our target? Nat. Rev. Mater. 1, 16069 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barenholz, Y. Doxil®—the first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117–134 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Shan, X. et al. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm. Sin. B 12, 3028–3048 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. COVID-19 vaccination, world data. WHO https://data.who.int/dashboards/covid19/vaccines?n=c (2024).

  9. Mathieu, E. et al. Coronavirus pandemic (COVID-19). OurWorldInData.org https://ourworldindata.org/coronavirus (2020).

  10. Milane, L. & Amiji, M. Clinical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: impact on translational nanomedicine. Drug Deliv. Transl. Res. 11, 1309–1315 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bhattacharjee, S. & Brayden, D. J. Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients. Expert Opin. Drug Discov. 16, 235–254 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Swierczewska, M., Crist, R. M. & McNeil, S. E. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 3–16 (Springer, 2018).

  13. Metselaar, J. M. & Lammers, T. Challenges in nanomedicine clinical translation. Drug Deliv. Transl. Res. 10, 721–725 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tang, H. et al. Cholesterol modulates the physiological response to nanoparticles by changing the composition of protein corona. Nat. Nanotechnol. 18, 1067–1077 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Hare, J. I. et al. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv. Drug Deliv. Rev. 108, 25–38 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Germain, M. et al. Delivering the power of nanomedicine to patients today. J. Control. Release 326, 164–171 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu, G. H., Gray, A. B. C. & Patra, H. K. Nanomedicine: controlling nanoparticle clearance for translational success. Trends Pharmacol. Sci. 43, 709–711 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Kendall, M. & Lynch, I. Long-term monitoring for nanomedicine implants and drugs. Nat. Nanotechnol. 11, 206–210 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Crist, R. M. et al. Common pitfalls in nanotechnology: lessons learned from NCI’s Nanotechnology Characterization Laboratory. Integr. Biol. 5, 66–73 (2013).

    Article  CAS  Google Scholar 

  20. Li, J. & Kataoka, K. Chemo-physical strategies to advance the in vivo functionality of targeted nanomedicine: the next generation. J. Am. Chem. Soc. 143, 538–559 (2020).

    Article  PubMed  Google Scholar 

  21. Beraldo-de-Araújo, V. L. et al. Excipient–excipient interactions in the development of nanocarriers: an innovative statistical approach for formulation decisions. Sci. Rep. 9, 10738 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang, N., Sun, H., Dong, J. & Ouyang, D. PharmDE: a new expert system for drug–excipient compatibility evaluation. Int. J. Pharm. 607, 120962 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Berrecoso, G., Crecente-Campo, J. & Alonso, M. J. Quantification of the actual composition of polymeric nanocapsules: a quality control analysis. Drug Deliv. Transl. Res. 12, 2865–2874 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Waterhouse, D. N., Tardi, P. G., Mayer, L. D. & Bally, M. B. A comparison of liposomal formulations of doxorubicin with drug administered in free form: changing toxicity profiles. Drug. Saf. 24, 903–920 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Harrington, K. J. et al. Phase I–II study of pegylated liposomal cisplatin (SPI-077) in patients with inoperable head and neck cancer. Ann. Oncol. 12, 493–496 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Troiano, G. et al. A quality by design approach to developing and manufacturing polymeric nanoparticle drug products. AAPS J. 18, 1354–1365 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Mast, M.-P. et al. Nanomedicine at the crossroads—a quick guide for IVIVC. Adv. Drug Deliv. Rev. 179, 113829 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Stillhart, C. et al. PBPK absorption modeling: establishing the in vitro–in vivo link—industry perspective. AAPS 21, 19 (2019).

    Article  Google Scholar 

  29. Yuan, D. et al. Physiologically based pharmacokinetic modeling of nanoparticles. J. Pharm. Sci. 108, 58–72 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Jung, M. et al. Advances in 3D bioprinting for cancer biology and precision medicine: from matrix design to application. Adv. Healthc. Mater. 11, 2200690 (2022).

    Article  CAS  Google Scholar 

  31. Cai, R. & Chen, C. The crown and the scepter: roles of the protein corona in nanomedicine. Adv. Mater. 31, 1805740 (2019).

    Article  CAS  Google Scholar 

  32. Subramaniam, S. et al. Protein adsorption determines pulmonary cell uptake of lipid-based nanoparticles. J. Colloid Interface Sci. 641, 36–47 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).

    Article  Google Scholar 

  34. Urbán, P., Liptrott, N. J. & Bremer, S. Overview of the blood compatibility of nanomedicines: a trend analysis of in vitro and in vivo studies. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11, e1546 (2019).

    Article  PubMed  Google Scholar 

  35. Jain, P. et al. In-vitro in-vivo correlation (IVIVC) in nanomedicine: iprotein corona the missing link? Biotechnol. Adv. 35, 889–904 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Agnihotri, T. G. et al. In vitro–in vivo correlation in nanocarriers: from protein corona to therapeutic implications. J. Control. Release 354, 794–809 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. He, H. et al. Survey of clinical translation of cancer nanomedicines—lessons learned from successes and failures. Acc. Chem. Res. 52, 2445–2461 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Tong, F., Wang, Y. & Gao, H. Progress and challenges in the translation of cancer nanomedicines. Curr. Opin. Biotechnol. 85, 103045 (2024).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, P. et al. Cancer nanomedicine toward clinical translation: obstacles, opportunities, and future prospects. Med 4, 147–167 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Hoffman, R. M. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat. Rev. Cancer 15, 451–452 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Zushin, P. H., Mukherjee, S. & Wu, J. C. FDA Modernization Act 2.0: transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches. J. Clin. Invest. 133, e175824 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ioannidis, J. P. A., Kim, B. Y. S. & Trounson, A. How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation. Nat. Biomed. Eng. 2, 797–809 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goodman, S. N., Fanelli, D. & Ioannidis, J. P. A. What does research reproducibility mean? Sci. Transl. Med. 8, 341ps12 (2016).

    Article  PubMed  Google Scholar 

  44. Ke, W. et al. Trends and patterns in cancer nanotechnology research: asurvey of NCI’s caNanoLab and nanotechnology characterization laboratory. Adv. Drug Deliv. Rev. 191, 114591 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Paliwal, R., Babu, R. J. & Palakurthi, S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech 15, 1527–1534 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, X., Huang, P., Yang, R. & Deng, H. mRNA cancer vaccines: construction and boosting strategies. ACS Nano 17, 19550–19580 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Pan, S. et al. The potential of mRNA vaccines in cancer nanomedicine and immunotherapy. Trends Immunol. 45, 20–31 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Shin, S. et al. Nanoparticle-based chimeric antigen receptor therapy for cancer immunotherapy. Tissue Eng. Regen. Med. 20, 371–387 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mi, J., Ye, Q. & Min, Y. Advances in nanotechnology development to overcome current roadblocks in CAR-T therapy for solid tumors. Front. Immunol. 13, 849759 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zuo, Y.-H., Zhao, X.-P. & Fan, X.-X. Nanotechnology-based chimeric antigen receptor T-cell therapy in treating solid tumor. Pharmacol. Res. 184, 106454 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, Y. et al. Efficient non-viral CAR-T cell generation via silicon-nanotube-mediated transfection. Mater. Today 63, 8–17 (2023).

    Article  Google Scholar 

  52. Hu, T., Kumar, A. R. K., Luo, Y. & Tay, A. Automating CAR-T transfection with micro and nano-technologies. Small Methods https://doi.org/10.1002/smtd.202301300 (2023).

  53. López-Estévez, A. M., Lapuhs, P., Pineiro-Alonso, L. & Alonso, M. J. Personalized cancer nanomedicine: overcoming biological barriers for intracellular delivery of biopharmaceuticals. Adv. Mater. 36, 2309355 (2023).

    Article  Google Scholar 

  54. Sun, Q., Radosz, M. & Shen, Y. Challenges in design of translational nanocarriers. J. Control. Release 164, 156–169 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. DepoCyte—withdrawal of application for variation to marketing authorisation. EMA https://www.ema.europa.eu/en/medicines/human/variation/depocyte (2006).

  56. Ramanathan, R. K. et al. Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in patients with advanced solid tumors: a pilot study. Clin. Cancer Res. 23, 3638–3648 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. May, J.-N. et al. Histopathological biomarkers for predicting the tumour accumulation of nanomedicines. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01197-4 (2024).

    Article  PubMed  Google Scholar 

  58. Angeli, F. et al. Optimal use of the non-inferiority trial design. Pharm. Med. 34, 159–165 (2020).

    Article  CAS  Google Scholar 

  59. Shitara, K. et al. Nab-paclitaxel versus solvent-based paclitaxel in patients with previously treated advanced gastric cancer (ABSOLUTE): an open-label, randomised, non-inferiority, phase 3 trial. Lancet Gastroenterol. Hepatol. 2, 277–287 (2017).

    Article  PubMed  Google Scholar 

  60. Fujiwara, Y. et al. A multi-national, randomised, open-label, parallel, phase III non-inferiority study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Br. J. Cancer 120, 475–480 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kosaka, Y. et al. Multicenter randomized open-label phase II clinical study comparing outcomes of NK105 and paclitaxel in advanced or recurrent breast cancer. Int. J. Nanomed. 17, 4567 (2022).

    Article  CAS  Google Scholar 

  62. Miedema, I. H. C. et al. First-in-human imaging of nanoparticle entrapped docetaxel (CPC634) in patients with advanced solid tumors using 89Zr-Df-CPC634 PET/CT. J. Clin. Oncol. 37, 3093 (2019).

    Article  Google Scholar 

  63. Atrafi, F. et al. A phase I dose-finding and pharmacokinetics study of CPC634 (nanoparticle entrapped docetaxel) in patients with advanced solid tumors. J. Clin. Oncol. 37, 3026–3026 (2019).

    Article  Google Scholar 

  64. Atrafi, F. et al. Intratumoral comparison of nanoparticle entrapped docetaxel (CPC634) with conventional docetaxel in patients with solid tumors. Clin. Cancer Res. 26, 3537–3545 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Ingrid, B. et al. CINOVA: a phase II study of CPC634 (nanoparticulate docetaxel) in patients with platinum resistant recurrent ovarian cancer. Int. J. Gynecol. Cancer 33, 1247 (2023).

    Article  Google Scholar 

  66. Tinkle, S. et al. Nanomedicines: addressing the scientific and regulatory gap. Ann. N. Y. Acad. Sci. 1313, 35–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Foulkes, R. et al. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater. Sci. 8, 4653–4664 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Hemmrich, E. & McNeil, S. Active ingredient vs excipient debate for nanomedicines. Nat. Nanotechnol. 18, 692–695 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Hertig, J. B. et al. Tackling the challenges of nanomedicines: are we ready? Am. J. Health Syst. Pharm. 78, 1047–1056 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fogel, D. B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: a review. Contemp. Clin. Trials Commun. 11, 156–164 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Center for Drug Evaluation and Research Drug Products, Including Biological Products, that Contain Nanomaterials (US Food & Drug Administration, 2022); https://www.fda.gov/media/157812/download

  72. Van Norman, G. A. Drugs, devices, and the FDA: Part 1: an overview of approval processes for drugs. J. Am. Coll. Cardiol. 1, 170–179 (2016).

    Google Scholar 

  73. Klein, K. et al. A pragmatic regulatory approach for complex generics through the US FDA 505 (j) or 505 (b)(2) approval pathways. Ann. N. Y. Acad. Sci. 1502, 5–13 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Elnathan, R., Tay, A., Voelcker, N. H. & Chiappini, C. The start-ups taking nanoneedles into the clinic. Nat. Nanotechnol. 17, 807–811 (2022).

    CAS  PubMed  Google Scholar 

  75. Park, A. et al. Rapid response through the entrepreneurial capabilities of academic scientists. Nat. Nanotechnol. 17, 802–807 (2022).

    CAS  PubMed  Google Scholar 

  76. Thomas, V. J., Bliemel, M., Shippam, C. & Maine, E. Endowing university spin-offs pre-formation: entrepreneurial capabilities for scientist-entrepreneurs. Technovation 96-97, 102153 (2020).

    Article  Google Scholar 

  77. Dayton, L. Coronavirus vaccine front-runner Moderna puts MIT chemist-entrepreneur Robert Langer in the spotlight. Nature Index https://www.nature.com/nature-index/news/coronavirus-vaccine-front-runner-moderna-puts-mit-chemist-entrepreneur-robert-langer-in-the-spotlight (2020).

  78. Langer, R. A personal account of translating discoveries in an academic lab. Nat. Biotechnol. 31, 487–489 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Prokesch, S. The Edison of medicine. Harv. Bus. Rev. 95, 134–143 (2017).

    Google Scholar 

  80. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Eaton, M. A. W., Levy, L. & Fontaine, O. M. A. Delivering nanomedicines to patients: a practical guide. Nanomedicine 11, 983–992 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gold, E. R. What the COVID-19 pandemic revealed about intellectual property. Nat. Biotechnol. 40, 1428–1430 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Faria, M. et al. Minimum information reporting in bio–nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kilkenny, C. et al. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J. Pharmacol. Pharmacother. 1, 94–99 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Center for Drug Evaluation and Research & Center for Biologics Evaluation and Research Guidance for Industry: Environment Assessment of Human Drug and Biologics Applications (US Food & Drug Administration, 1998); https://www.fda.gov/media/70809/download

  87. Center for Drug Evaluation and Research Guidance for Industry: Drug Products, Including Biological Products, that Contain Nanomaterials (US Food & Drug Administration, 2022); https://www.fda.gov/media/157812/download

  88. Chetwynd, A. J., Wheeler, K. E. & Lynch, I. Best practice in reporting corona studies: Minimum information about Nanomaterial Biocorona Experiments (MINBE). Nano Today 28, 100758 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hadjidemetriou, M. et al. In vivo biomolecule corona around blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles. ACS Nano 9, 8142–8156 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Ban, Z. et al. Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles. Proc. Natl Acad. Sci. USA 117, 10492–10499 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hickman, R. J. et al. Self-driving laboratories: a paradigm shift in nanomedicine development. Matter 6, 1071–1081 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Arden, N. S. et al. Industry 4.0 for pharmaceutical manufacturing: preparing for the smart factories of the future. Int. J. Pharm. 602, 120554 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Young, H. et al. Toward the scalable, rapid, reproducible, and cost-effective synthesis of personalized nanomedicines at the point of care. Nano Lett. 24, 920–928 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. de Vlieger, J. S. B. et al. Report of the AAPS guidance forum on the FDA draft guidance for industry: ‘drug products, including biological products, that contain nanomaterials’. AAPS J. 21, 56 (2019).

    Article  PubMed  Google Scholar 

  95. Marchant, G. E., Sylvester, D. J., Abbott, K. W. & Danforth, T. L. International harmonization of regulation of nanomedicine. Stud. Ethics Law Technol. https://doi.org/10.2202/1941-6008.1120 (2010).

Download references

Acknowledgements

P.J. gratefully acknowledges the financial and other support of Cancer Council SA’s Beat Cancer Project (MCR2282) on behalf of its donors and the State Government of South Australia through the Department of Health and Wellbeing, and The Hospital Research Foundation through their EMCR Fellowship funding (2022-CF-EMCR-004-25314). M.J.A. gratefully acknowledges support by the ISCIII thorough AES 2020, award number AC20/00028 and within the framework of EuroNanoMed III and the Ministry of Sciences, Innovation and Universities AEI/PID2020-119368RB-I00. M.K. acknowledges funding support from the National Health and Medical Research Council (NHMRC) Investigator Grant (2016464), the NHMRC Synergy Grant (2019056), a Cancer Council New South Wales Project (2020797), a Tour de Cure (CG-001-FYE2023) and a Neuroblastoma Australia Grant. T.L. gratefully acknowledges support by the European Research Council (ERC: CoG Meta-Targeting (864121) and PoC PRIME (101138100), the German Federal Ministry of Research and Education (BMBF: PP-TNBC) and the German Research Foundation (DFG: RTG2735, SFB1066, LA2937/4-1, KFO5011). C.-X.Z. acknowledges the support from the Australian National Health and Medical Research Council Investigator project of Australia (APP2008698). H.A.S. acknowledges the Research Council of Finland (grant number 331151) and the University Medical Center Groningen Research Funds.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper. P.J. conceived the work and prepared the paper. P.J. and H.A.S. supervised the project, collating the expert advice from the co-authors. C.J.A., M.J.A., M.A., M.S.B., M.G., M.K., R.L., T.L., M.T.P., A.P., C.A.P., C.J.F.R., B.S., R.B.S., A.S., S.S., C.R.T., K.A.W., C.-X.Z. and H.A.S. analysed the framework, provided critical expertise and conceptual advice across the various elements of nanomedicine development, and edited the paper.

Corresponding authors

Correspondence to Paul Joyce or Hélder A. Santos.

Ethics declarations

Competing interests

M.J.A. is a co-founder of Libera Bio. M.A. is an employee and shareholder of AstraZeneca. M.B. is a co-founder of Elucida Oncology, Inc, and serves on their scientific advisory board. M.G. is an employee of Curadigm, a subsidiary company of Nanobiotix. He is co-inventor of patent applications related to NBTXR3 product (Nanobiotix) described in this article. R.L. is a co-founder of Moderna and serves on its board. For a list of entities with which R.L. is, or has been recently involved, compensated or uncompensated, see https://www.dropbox.com/scl/fi/xjq5dbrj8pufx53035zdf/RL-COI-2024.pdf?rlkey=fwv336uoepiaiyg4e7jz5t4zo&dl=0. T.L. is a co-founder of SonoMAC GmbH, and serves on the scientific advisory board of BiOrion Technologies BV, Sense Biopharma and Cristal Therapeutics. M.T.P. is a Sanofi employee and may hold shares and/or stock options in the company. C.J.F.R. is a consultant to and shareholder of Cristal Delivery BV and CEO of Liberates. C.R.T. is an employee of Pfizer Inc. K.A.W. is an inventor on several patents related to mRNA delivery systems, is an SAB member of Rampart Bioscience, EnterX Bio and Poseida Therapeutics, and is a shareholder of Poseida Therapeutics.

Peer review

Peer review information

Nature Nanotechnology thanks Roey Elnathan and Betty Kim for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joyce, P., Allen, C.J., Alonso, M.J. et al. A translational framework to DELIVER nanomedicines to the clinic. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01754-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01754-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research