Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene

Abstract

In the fractional quantum Hall effect, quasiparticles are collective excitations that have a fractional charge and show fractional statistics as they interchange positions. While the fractional charge affects semi-classical characteristics such as shot noise and charging energies, fractional statistics is most notable through quantum interference. Here we study fractional statistics in a bilayer graphene Fabry–Pérot interferometer. We tune the interferometer from the Coulomb-dominated regime to the Aharonov–Bohm regime, both for integer and fractional quantum Hall states. Focusing on the fractional quantum Hall state with a filling factor ν = 1/3, we follow the evolution of the Aharonov–Bohm interference of quasiparticles while varying the magnetic flux through an interference loop and the charge density within the loop independently. When their combined variation is such that the Landau filling remains 1/3, the charge density in the loop varies continuously. We then observe pristine Aharonov–Bohm oscillations with a period of three flux quanta, as expected for quasiparticles of one-third of the electron charge. Yet, when the combined variation leads to discrete events of quasiparticle addition or removal, phase jumps emerge and alter the phase evolution. Notably, across all cases with discrete and continuous charge variation, the average phase consistently increases by 2π with each addition of one electron to the loop, as expected for quasiparticles, obeying fractional statistics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FPI based on bilayer graphene.
Fig. 2: Tunable IQHE interference regimes, from CD to AB regimes.
Fig. 3: AB interference at a 1/3 fractional filling.
Fig. 4: Tunability between constant filling and constant density.

Similar content being viewed by others

Data availability

The data shown in the main text are available from the online depository Zenodo at https://doi.org/10.5281/zenodo.12509248 (ref. 50).

References

  1. Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982).

    Article  CAS  Google Scholar 

  2. Canright, G. S. & Girvin, S. M. Fractional statistics: quantum possibilities in two dimensions. Science 247, 1197–1205 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Burnell, F. J. Anyon condensation and its applications. Annu. Rev. Condens. Matter Phys. 9, 307–327 (2018).

    Article  CAS  Google Scholar 

  4. Stern, A. Anyons and the quantum Hall effect—a pedagogical review. Ann. Phys. 323, 204–249 (2008).

    Article  CAS  Google Scholar 

  5. Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).

    Article  CAS  Google Scholar 

  6. Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Stern, A. Non-Abelian states of matter. Nature 464, 187–193 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Jain, J. K. Theory of the fractional quantum Hall effect. Phys. Rev. B 41, 7653–7665 (1990).

    Article  CAS  Google Scholar 

  9. Feldman, D. E. & Halperin, B. I. Fractional charge and fractional statistics in the quantum Hall effects. Rep. Prog. Phys. 84, 076501 (2021).

    Article  Google Scholar 

  10. Halperin, B. I., Stern, A., Neder, I. & Rosenow, B. Theory of the Fabry–Pérot quantum Hall interferometer. Phys. Rev. B 83, 155440 (2011).

    Article  Google Scholar 

  11. Bonderson, P., Shtengel, K. & Slingerland, J. K. Probing non-Abelian statistics with quasiparticle interferometry. Phys. Rev. Lett. 97, 016401 (2006).

    Article  PubMed  Google Scholar 

  12. Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Impact of bulk–edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers. Nat. Commun. 13, 344 (2021).

    Article  Google Scholar 

  13. Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Fabry–Pérot interferometry at the ν = 2/5 fractional quantum Hall state. Phys. Rev. X 13, 041012 (2023).

    CAS  Google Scholar 

  14. Kundu, H. K., Biswas, S., Ofek, N., Umansky, V. & Heiblum, M. Anyonic interference and braiding phase in a Mach–Zehnder interferometer. Nat. Phys. 19, 515–521 (2023).

    Article  CAS  Google Scholar 

  15. McClure, D. T., Chang, W., Marcus, C. M., Pfeiffer, L. N. & West, K. W. Fabry–Perot interferometry with fractional charges. Phys. Rev. Lett. 108, 256804 (2011).

    Article  Google Scholar 

  16. Carrega, M., Chirolli, L., Heun, S. & Sorba, L. Anyons in quantum Hall interferometry. Nat. Rev. Phys. 3, 698–711 (2021).

    Article  Google Scholar 

  17. Ji, Y. et al. An electronic Mach–Zehnder interferometer. Nature 422, 415–418 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Law, K. T., Feldman, D. E. & Gefen, Y. Electronic Mach–Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006).

    Article  Google Scholar 

  19. Feldman, D. E., Gefen, Y., Kitaev, A., Law, K. T. & Stern, A. Shot noise in an anyonic Mach–Zehnder interferometer. Phys. Rev. B 76, 085333 (2007).

    Article  Google Scholar 

  20. Ponomarenko, V. V. & Averin, D. V. Mach–Zehnder interferometer in the fractional quantum Hall regime. Phys. Rev. Lett. 99, 066803 (2007).

    Article  PubMed  Google Scholar 

  21. Chamon, C. et al. Two point-contact interferometer for quantum Hall systems. Phys. Rev. B 55, 2331–2343 (1997).

    Article  Google Scholar 

  22. Feldman, D. E. & Halperin, B. I. Robustness of quantum Hall interferometry. Phys. Rev. B 105, 165310 (2022).

    Article  CAS  Google Scholar 

  23. Ofek, N. et al. Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proc. Natl Acad. Sci. USA 107, 5276–5281 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Willett, R. L. et al. Interference measurements of non-Abelian e/4 & Abelian e/2 quasiparticle braiding. Phys. Rev. X 13, 011028 (2023).

    CAS  Google Scholar 

  25. Nakamura, J. et al. Aharonov–Bohm interference of fractional quantum Hall edge modes. Nat. Phys. 15, 563–569 (2019).

    Article  CAS  Google Scholar 

  26. Déprez, C. et al. A tunable Fabry–Pérot quantum Hall interferometer in graphene. Nat. Nanotechnol. 16, 555–562 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ronen, Y. et al. Aharonov–Bohm effect in graphene-based Fabry–Pérot quantum Hall interferometers. Nat. Nanotechnol. 16, 563–569 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Fu, H. et al. Aharonov–Bohm oscillations in bilayer graphene quantum Hall edge state Fabry–Pérot interferometers. Nano Lett. 23, 718–725 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, L. et al. Graphene-based quantum Hall interferometer with self-aligned side gates. Nano Lett. 22, 9645–9651 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, W. et al. Evidence for correlated electron pairs and triplets in quantum Hall interferometers. Preprint at https://arxiv.org/abs/2312.14767 (2023).

  31. Werkmeister, T. et al. Strongly coupled edge states in a graphene quantum Hall interferometer. Nat. Commun. 15, 6533 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ki, D.-K., Fal’ko, V. I., Abanin, D. A. & Morpurgo, A. F. Observation of even denominator fractional quantum Hall effect in suspended bilayer graphene. Nano Lett. 14, 2135–2139 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Li, J. I. A. et al. Even-denominator fractional quantum Hall states in bilayer graphene. Science 358, 648–652 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Huang, K. et al. Valley isospin controlled fractional quantum Hall states in bilayer graphene. Phys. Rev. X 12, 031019 (2022).

    CAS  Google Scholar 

  35. Assouline, A. et al. Energy gap of the even-denominator fractional quantum Hall state in bilayer graphene. Phys. Rev. Lett. 132, 046603 (2024).

    Article  CAS  PubMed  Google Scholar 

  36. Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984).

    Article  Google Scholar 

  38. Kivelson, S. Semiclassical theory of localized many-anyon states. Phys. Rev. Lett. 65, 3369–3372 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Rosenow, B. & Halperin, B. I. Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, Y. et al. Distinct signatures for Coulomb blockade and Aharonov–Bohm interference in electronic Fabry–Perot interferometers. Phys. Rev. B 79, 241304 (2008).

    Article  Google Scholar 

  41. Camino, F. E., Zhou, W. & Goldman, V. J. e/3 Laughlin quasiparticle primary-filling ν = 1/3 interferometer. Phys. Rev. Lett. 98, 076805 (2006).

    Article  Google Scholar 

  42. Jain, J. K. Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199–202 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    Article  Google Scholar 

  44. Cohen, L. A. et al. Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact. Science 382, 542–547 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Glidic, P. et al. Quasiparticle Andreev scattering in the ν = 1/3 fractional quantum Hall regime. Nat. Commun. 14, 514 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hashisaka, M. et al. Coherent–incoherent crossover of charge and neutral mode transport as evidence for the disorder-dominated fractional edge phase. Phys. Rev. X 13, 031024 (2023).

    CAS  Google Scholar 

  47. Cohen, Y. et al. Synthesizing a ν = 2/3 fractional quantum Hall effect edge state from counter-propagating ν = 1 and ν = 1/3 states. Nat. Commun. 10, 1920 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rosenow, B. & Stern, A. Flux superperiods and periodicity transitions in quantum Hall interferometers. Phys. Rev. Lett. 124, 106805 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Stern, A. & Halperin, B. I. Proposed experiments to probe the non-Abelian ν = 5/2 quantum Hall state. Phys. Rev. Lett. 96, 016802 (2006).

    Article  PubMed  Google Scholar 

  50. Jehyun, K. Aharonov–Bohm interference and statistical phase jumps evolution in fractional quantum Hall states in bilayer graphene. Zenodo https://doi.org/10.5281/zenodo.12509248 (2024).

Download references

Acknowledgements

We thank M. Heiblum for the useful discussions and his support of the project. We also thank P. Kim, T. Werkmeister and J. Ehrest for fruitful discussions. This work was supported by the Quantum Science and Technology Program 2021 to Y.R., by a research grant from the Schwartz Reisman Collaborative Science Program, which is supported by the Gerald Schwartz and Heather Reisman Foundation to Y.R., by a research grant from the Center for New Scientists at the Weizmann Institute of Science to Y.R., by grants from the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreements LEGOTOP No. 788715 and HQMAT No. 817799) to A.S., the DFG (CRC/Transregio 183, EI 519/7-1) to A.S., and by the ISF Quantum Science and Technology (2074/19) to A.S.

Author information

Authors and Affiliations

Authors

Contributions

J.K. and R.K. improved the quality of the stacks. J.K. and H.D. prepared the stacks. K.W. and T.T. grew the hBN crystals. J.K., A.I., V.B. and R.K. improved the quality of the device. J.K. fabricated the device. A.H. and C.H. developed the measurement circuit and a dilution refrigerator. J.K. performed the measurements. J.K., H.D., A.S. and Y.R. analysed the measured data. A.S. developed the theoretical aspect. J.K., H.D., A.S. and Y.R. wrote the paper with input from all authors. Y.R. supervised the overall work done on the project.

Corresponding author

Correspondence to Yuval Ronen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–11 with Figs. 1–21.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Dev, H., Kumar, R. et al. Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01751-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01751-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing