Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery

Abstract

Systemic delivery of messenger RNA (mRNA) for tissue-specific targeting using lipid nanoparticles (LNPs) holds great therapeutic potential. Nevertheless, how the structural characteristics of ionizable lipids (lipidoids) impact their capability to target cells and organs remains unclear. Here we engineered a class of siloxane-based ionizable lipids with varying structures and formulated siloxane-incorporated LNPs (SiLNPs) to control in vivo mRNA delivery to the liver, lung and spleen in mice. The siloxane moieties enhance cellular internalization of mRNA-LNPs and improve their endosomal escape capacity, augmenting their mRNA delivery efficacy. Using organ-specific SiLNPs to deliver gene editing machinery, we achieve robust gene knockout in the liver of wild-type mice and in the lungs of both transgenic GFP and Lewis lung carcinoma (LLC) tumour-bearing mice. Moreover, we showed effective recovery from viral infection-induced lung damage by delivering angiogenic factors with lung-targeted Si5-N14 LNPs. We envision that our SiLNPs will aid in the clinical translation of mRNA therapeutics for next-generation tissue-specific protein replacement therapies, regenerative medicine and gene editing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A combinatorial library of siloxane-incorporated ionizable lipids with tunable structures for tissue-specific mRNA delivery.
Fig. 2: Siloxane moiety incorporation improves cellular internalization and endosomal escape.
Fig. 3: In vivo structure–activity studies of siloxane-incorporated lipidoid formulations for mRNA delivery and organ selectivity to the liver, lungs and spleen.
Fig. 4: Liver-targeted mRNA delivery and CRISPR–Cas9 gene editing by SiLNPs.
Fig. 5: Lung-targeted mRNA delivery and CRISPR–Cas9 gene editing by SiLNPs.
Fig. 6: Lung-targeted SiLNPs for efficient vascular repair.

Similar content being viewed by others

Data availability

All relevant data supporting the findings of this study are available within the paper, Supplementary Information or Source Data file. Source data are provided with this paper.

References

  1. Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sahin, U., Karikó, K. & Türeci, O. mRNA-based therapeutics—developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Mendes, B. B. et al. Nanodelivery of nucleic acids. Nat. Rev. Methods Prim. 2, 24 (2022).

    Article  CAS  Google Scholar 

  5. Pastor, F. et al. An RNA toolbox for cancer immunotherapy. Nat. Rev. Drug Discov. 17, 751 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Miao, L., Zhang, Y. & Huang, L. mRNA vaccine for cancer immunotherapy. Mol. Cancer 20, 41 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, H., Zhang, Y. & Yin, H. Genome editing with mRNA encoding ZFN, TALEN, and Cas9. Mol. Ther. 27, 735 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yin, H., Kauffman, K. J. & Anderson, D. G. Delivery technologies for genome editing. Nat. Rev. Drug Discov. 16, 387 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hajj, K. A. & Whitehead, K. A. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2, 17056 (2017).

    Article  CAS  Google Scholar 

  12. Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Whitehead, K. A. et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat. Commun. 5, 4277 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Qiu, M., Li, Y., Bloomer, H. & Xu, Q. Developing biodegradable lipid nanoparticles for intracellular mRNA delivery and genome editing. Acc. Chem. Res. 54, 4001 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Hou, X. et al. Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis. Nat. Nanotechnol. 15, 41 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao, X. et al. Imidazole-based synthetic lipidoids for in vivo mRNA delivery into primary T lymphocytes. Angew. Chem. Int. Ed. 59, 20083 (2020).

    Article  CAS  Google Scholar 

  18. Zhou, K. et al. Modular degradable dendrimers enable small RNAs to extend survival in an aggressive liver cancer model. Proc. Natl Acad. Sci. USA 113, 520 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miao, L. et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Xue, L. et al. Rational design of bisphosphonate lipid-like materials for mRNA delivery to the bone microenvironment. J. Am. Chem. Soc. 144, 9926 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Li, W. et al. Biomimetic nanoparticles deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy. Nat. Commun. 12, 7264 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15, 313 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kulkarni, J. A., Witzigmann, D., Chen, S., Cullis, P. R. & van der Meel, R. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc. Chem. Res. 52, 2435 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat. Mater. 20, 701 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qiu, M. et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 119, e2116271119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shahbazi, M. A., Herranz, B. & Santos, H. A. Nanostructured porous Si-based nanoparticles for targeted drug delivery. Biomatter 2, 296 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tang, F., Li, L. & Chen, D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater. 24, 1504 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Frampton, M. B. et al. Exploring the utility of hybrid siloxane-phosphocholine (SiPC) liposomes as drug delivery vehicles. RSC Adv. 11, 13014 (2021).

    Article  CAS  Google Scholar 

  30. Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Zhu, Y. et al. Multi-step screening of DNA/lipid nanoparticles and co-delivery with siRNA to enhance and prolong gene expression. Nat. Commun. 13, 4282 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu, B. et al. Thermostable ionizable lipid-like nanoparticles (iLAND) for RNAi treatment of hyperlipidemia. Sci. Adv. 8, eabm1418 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ni, X., Kelly, S. S., Xu, S. & Xian, M. The path to controlled delivery of reactive sulfur species. Acc. Chem. Res. 54, 3968 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Behzadi, S. et al. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46, 4218 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wei, Y. et al. A cationic lipid with advanced membrane fusion performance for pDNA and mRNA delivery. J. Mater. Chem. B 11, 2095 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Tokudome, Y. et al. Preparation and characterization of ceramide-based liposomes with high fusion activity and high membrane fluidity. Colloids Surf. B 73, 92 (2009).

    Article  CAS  Google Scholar 

  37. Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26, 561 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Paunovska, K. et al. A direct comparison of in vitro and in vivo nucleic acid delivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Lett. 18, 2148 (2018).

    CAS  Google Scholar 

  39. Nagy, A. Cre recombinase: the universal reagent for genome tailoring. Genesis 26, 99 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Hajj, K. A. et al. A potent branched-tail lipid nanoparticle enables multiplexed mRNA delivery and gene editing in vivo. Nano Lett. 20, 5167 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Singh, B., Fu, C. & Bhattacharya, J. Vascular expression of the αvβ3-integrin in lung and other organs. Am. J. Physiol. Lung Cell. Mol. Physiol. 278, L217 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Alton, E. et al. Toxicology study assessing efficacy and safety of repeated administration of lipid/DNA complexes to mouse lung. Gene Ther. 21, 89 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Ebos, J. & Kerbel, R. S. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat. Rev. Clin. Oncol. 8, 210 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xue, L. et al. High-throughput barcoding of nanoparticles identifies cationic, degradable lipid-like materials for mRNA delivery to the lungs in female preclinical models. Nat. Commun. 15, 1884 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao, G. et al. TGF-βR2 signaling coordinates pulmonary vascular repair after viral injury in mice and human tissue. Sci. Trans. Med. 16, eadg6229 (2024).

    Article  CAS  Google Scholar 

  46. Jia, T. et al. FGF-2 promotes angiogenesis through a SRSF1/SRSF3/SRPK1-dependent axis that controls VEGFR1 splicing in endothelial cells. BMC Biol. 19, 173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cao, R. et al. Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ. Res. 94, 664 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Dahlman, J. E. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McDermott, M. R., Brook, M. A. & Bartzoka, V. Adjuvancy effect of different types of silicone gel. J. Biomed. Mater. Res. 46, 132 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Huang, X. et al. Genome editing abrogates angiogenesis in vivo. Nat. Commun. 8, 112 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wei, T. et al. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat. Commun. 11, 3232 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Momany, F. & Rone, R. Validation of the general purpose QUANTA ®3.2/CHARMm® force field. J. Comput. Chem. 13, 888 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.J.M. acknowledges support from a US National Institutes of Health (NIH) Director’s New Innovator Award (DP2 TR002776), a Burroughs Wellcome Fund Career Award at the Scientific Interface (CASI), an American Cancer Society Research Scholar Grant (RSG-22-122-01-ET), a US National Science Foundation CAREER Award (CBET-2145491) and the National Institutes of Health (NICHD R01 HD115877). A.E.V. acknowledges support from NIH grants (R01HL153539) and the Margaret Q. Landenberger Foundation. S.J.S. and K.L.S. are supported by an NSF Graduate Research Fellowship (award 1845298). R.P. was supported by an NIH F30 fellowship (F30HL162465-01A1). Z.X. is supported by a CRI Irvington fellowship (grant number CRI4168) from the Cancer Research Institute. We thank The Wistar Institute, the Pathology Core, Nucleic Acids Technology Core, and Program for Comparative Medicine at the Gene Therapy Program for technical assistance and I. Muthuramu for analysis of deep sequencing data. Elements in Figs. 1, 4, 5 and 6 were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

L.X. and M.J.M. conceived the concept. L.X. and X.X. designed and synthesized all the siloxane-incorporated ionizable lipids used in this study. L.X., N.G., G.Z., X.H., C.C.W., V.C., R.P., R.E.-M. and Y.S. performed the experiments. L.X., N.G., S.J.S., K.L.S., K.W. and M.J.M. wrote the paper. L.X., G.Z., N.G., X.H., S.J.S., X.X., Z.X., R.P., J.X., K.L.S., C.C.W., R.E.-M., V.C., I.-C.Y., J.X., J.C., Y.S., M.-G.A., K.W., L.W., D.J.P., D.W., A.E.V., J.M.W. and M.J.M. reviewed and commented on the paper.

Corresponding author

Correspondence to Michael J. Mitchell.

Ethics declarations

Competing interests

L.X. and M.J.M. are inventors on a patent filed by the Trustees of the University of Pennsylvania (International Patent Application No. PCT/US23/66564) describing the lipid nanoparticle technology in this study. J.M.W. is a paid advisor to and holds equity in iECURE, Passage Bio and the Center for Breakthrough Medicines (CBM). He also holds equity in the former G2 Bio asset companies and Ceva Santé Animale. He has sponsored research agreements with Alexion Pharmaceuticals, Amicus Therapeutics, CBM, Ceva Santé Animale, Elaaj Bio, FA212, Foundation for Angelman Syndrome Therapeutics, former G2 Bio asset companies, iECURE and Passage Bio, which are licensees of Penn Technology. J.M.W., L.W. and C.C.W are inventors on patents that have been licensed to various biopharmaceutical companies and for which they may receive payments. D.W. is named on patents that describe the use of nucleoside-modified mRNA as a platform to deliver therapeutic proteins and vaccines. M.J.M., D.W. and M.-G.A. are also named on patents describing the use of lipid nanoparticles and lipid compositions for nucleic acid delivery. The other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Yusuke Sato and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Formulation parameters and characterization of SiLNPs.

a, SiLNPs formulation parameters. Siloxane-incorporated lipidoids, DOPE, cholesterol, and C14PEG2K with molar ratio of 35%, 16%, 46.5%, and 2.5% were used for SiLNPs formulation. b, Representative cryogenic transmission electron microscopy (cryo-TEM) image of SiLNP morphology. Scale bar: 100 nm. c, Hydrodynamic size distribution of representative SiLNP.

Source data

Extended Data Fig. 2 Blood chemistry evaluation of mice after administration of Si6-C14b LNP co-delivering Cas9 mRNA and TTR sgRNA.

(a) AST, (b) ALT, (c) BUN, and (d) Creatinine levels of blood samples obtained from mice treated with PBS and Si6-C14b LNP (RNA dose: 3 mg kg−1). Data are presented as mean ± s.e.m. (n = 3 mice for PBS treated groups; n =4 for LNP treated groups).

Source data

Supplementary information

Supplementary Information

Supplementary Text, Tables 1–9, Schemes 1–5 and Figs. 1–51.

Reporting Summary

Supplementary Data 1

Statistical source data for the supplementary figures.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig./Table 1

Statistical source data.

Source Data Extended Data Fig./Table 2

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, L., Zhao, G., Gong, N. et al. Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01747-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01747-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research