Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Bottom-up synthetic immunology

Abstract

Infectious diseases and cancer evade immune surveillance using similar mechanisms. Targeting immune mechanisms using common strategies thus represents a promising avenue to improve prevention and treatment. Synthetic immunology can provide such strategies by applying engineering principles from synthetic biology to immunology. Synthetic biologists engineer cells by top-down genetic manipulation or bottom-up assembly from nanoscale building blocks. Recent successes in treating advanced tumours and diseases using genetically engineered immune cells highlight the power of the top-down synthetic immunology approach. However, genetic immune engineering is mostly limited to ex vivo applications and is subject to complex counter-regulation inherent to immune functions. Bottom-up synthetic biology can harness the rich nanotechnology toolbox to engineer molecular and cellular systems from scratch and equip them with desired functions. These are beginning to be tailored to perform targeted immune functions and should hence allow intervention strategies by rational design. In this Perspective we conceptualize bottom-up synthetic immunology as a new frontier field that uses nanotechnology for crucial innovations in therapy and the prevention of infectious diseases and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic overview of innate and adaptive immune responses exemplified for pathogen infection.
Fig. 2: Top-down versus bottom-up synthetic immunology.
Fig. 3: Modification of immune cell interactions by bottom-up synthetic immunology.
Fig. 4: Functional selection of elite immune cells for personalized immunotherapy.

Similar content being viewed by others

References

  1. Makris, S. et al. Immune function and dysfunction are determined by lymphoid tissue efficacy. Dis. Model. Mech. 15, dmm049256 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ghorani, E., Swanton, C. & Quezada, S. A. Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity 56, 2270–2295 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Wykes, M. N. & Lewin, S. R. Immune checkpoint blockade in infectious diseases. Nat. Rev. Immunol. 18, 91–104 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Padariya, M. et al. Viruses, cancer and non-self recognition. Open Biol. 11, 200348 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schwille, P. Bottom-up synthetic biology: engineering in a tinkerer’s world. Science 333, 1252–1254 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Wimmer, E., Mueller, S., Tumpey, T. M. & Taubenberger, J. K. Synthetic viruses: a new opportunity to understand and prevent viral disease. Nat. Biotechnol. 27, 1163–1172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brooks, S. M. & Alper, H. S. Applications, challenges, and needs for employing synthetic biology beyond the lab. Nat. Commun. 12, 1390 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Voigt, C. A. Synthetic biology 2020–2030: six commercially-available products that are changing our world. Nat. Commun. 11, 6379 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Csepregi, L., Ehling, R. A., Wagner, B. & Reddy, S. T. Immune literacy: reading, writing, and editing adaptive immunity. iScience 23, 101519 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baker, D. J., Arany, Z., Baur, J. A., Epstein, J. A. & June, C. H. CAR T therapy beyond cancer: the evolution of a living drug. Nature 619, 707–715 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Müller, F. et al. CD19 CAR T-cell therapy in autoimmune disease: a case series with follow-up. N. Engl. J. Med. 390, 687–700 (2024).

    Article  PubMed  Google Scholar 

  12. Maldini, C. R., Ellis, G. I. & Riley, J. L. CAR T cells for infection, autoimmunity and allotransplantation. Nat. Rev. Immunol. 18, 605–616 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hamilton, J. R. et al. In vivo human T cell engineering with enveloped delivery vehicles. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02085-z (2024).

  14. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parker, K. R. et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 183, 126–142 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Irvine, D. J., Maus, M. V., Mooney, D. J. & Wong, W. W. The future of engineered immune cell therapies. Science 378, 853–858 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cetin, M. et al. T-FINDER: a highly sensitive, pan-HLA platform for functional T cell receptor and ligand discovery. Sci. Adv. 10, eadk3060 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zuiani, A. et al. A multivalent mRNA monkeypox virus vaccine (BNT166) protects mice and macaques from orthopoxvirus disease. Cell 187, 1363–1373 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gopfrich, K., Platzman, I. & Spatz, J. P. Mastering complexity: towards bottom-up construction of multifunctional eukaryotic synthetic Cells. Trends Biotechnol. 36, 938–951 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Du, Y. et al. Membrane-anchored DNA nanojunctions enable closer antigen-presenting cell–T-cell contact in elevated T-cell receptor triggering. Nat. Nanotechnol. 18, 818–827 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Staufer, O. et al. Synthetic virions reveal fatty acid-coupled adaptive immunogenicity of SARS-CoV-2 spike glycoprotein. Nat. Commun. 13, 868 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sigl, C. et al. Programmable icosahedral shell system for virus trapping. Nat. Mater. 20, 1281–1289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Staufer, O. et al. Bottom-up assembly of biomedical relevant fully synthetic extracellular vesicles. Sci. Adv. 7, eabg6666 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fernandez-Yague, M. A. et al. Analyzing immune response to engineered hydrogels by hierarchical clustering of inflammatory cell subsets. Sci. Adv. 8, eabd8056 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Parolini, L. et al. Volume and porosity thermal regulation in lipid mesophases by coupling mobile ligands to soft membranes. Nat. Commun. 6, 5948 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Chan, Y. H., van Lengerich, B. & Boxer, S. G. Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides. Proc. Natl Acad. Sci. USA 106, 979–984 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Laksono, B. M., de Vries, R. D., Duprex, W. P. & de Swart, R. L. Measles pathogenesis, immune suppression and animal models. Curr. Opin. Virol. 41, 31–37 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Abraham, L. & Fackler, O. T. HIV-1 Nef: a multifaceted modulator of T cell receptor signaling. Cell Commun. Signal. 10, 39 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu, Y., Duan, Y. & Salaita, K. DNA nanotechnology for investigating mechanical signaling in the immune system. Angew. Chem. Int Ed. Engl. 62, e202302967 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Schoenit, A. et al. Tuning epithelial cell-cell adhesion and collective dynamics with functional DNA-E-cadherin hybrid linkers. Nano Lett. 22, 302–310 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Imle, A. et al. Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures. Nat. Commun. 10, 2144 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gallucci, L. et al. Tissue-like environments shape functional interactions of HIV-1 with immature dendritic cells. EMBO Rep. 24, e56818 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Göpfrich, K. et al. Large-conductance transmembrane porin made from DNA origami. ACS Nano 10, 8207–8214 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhan, P., Jahnke, K., Liu, N. & Göpfrich, K. Functional DNA-based cytoskeletons for synthetic cells. Nat. Chem. 14, 958–963 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Veneziano, R. et al. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. Nat. Nanotechnol. 15, 716–723 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Seitz, I. et al. DNA-origami-directed virus capsid polymorphism. Nat. Nanotechnol. 18, 1205–1212 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Geary, C., Grossi, G., McRae, E. K. S., Rothemund, P. W. K. & Andersen, E. S. RNA origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds. Nat. Chem. 13, 549–558 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Becker, J., Fakhiri, J. & Grimm, D. Fantastic AAV gene therapy vectors and how to find them—random diversification, rational design and machine learning. Pathogens 11, 756 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Strebinger, D. et al. Cell type-specific delivery by modular envelope design. Nat. Commun. 14, 5141 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oktay, E. et al. DNA origami presenting the receptor binding domain of SARS-CoV-2 elicit robust protective immune response. Commun. Biol. 6, 308 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tan, C. L. et al. Prediction of tumor-reactive T cell receptors from scRNA-seq data for personalized T cell therapy. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02161-y (2024).

  44. Dekkers, J. F. et al. Uncovering the mode of action of engineered T cells in patient cancer organoids. Nat. Biotechnol. 41, 60–69 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Verbeke, R., Hogan, M. J., Loré, K. & Pardi, N. Innate immune mechanisms of mRNA vaccines. Immunity 55, 1993–2005 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Parhiz, H., Atochina-Vasserman, E. N. & Weissman, D. mRNA-based therapeutics: looking beyond COVID-19 vaccines. Lancet 403, 1192–1204 (2024).

    Article  CAS  PubMed  Google Scholar 

  47. Wamhoff, E. C. et al. Enhancing antibody responses by multivalent antigen display on thymus-independent DNA origami scaffolds. Nat. Commun. 15, 795 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Du, R. R. et al. Innate immune stimulation using 3D wireframe DNA origami. ACS Nano 16, 20340–20352 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zeng, Y. C. et al. DNA origami vaccine (DoriVac) nanoparticles improve both humoral and cellular immune responses to infectious diseases. Preprint at bioRxiv https://doi.org/10.1101/2023.12.29.573647 (2024).

  50. Liu, S. et al. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat. Mater. 20, 421–430 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Wagenbauer, K. F. et al. Programmable multispecific DNA-origami-based T-cell engagers. Nat. Nanotechnol. 18, 1319–1326 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arulkumaran, N. et al. DNA nanodevices with selective immune cell interaction and function. ACS Nano 15, 4394–4404 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Kern, N., Dong, R., Douglas, S. M., Vale, R. D. & Morrissey, M. A. Tight nanoscale clustering of Fcγ receptors using DNA origami promotes phagocytosis. eLife 10, e68311 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun, Y. et al. DNA origami-based artificial antigen-presenting cells for adoptive T cell therapy. Sci. Adv. 8, eadd1106 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dong, R. et al. DNA origami patterning of synthetic T cell receptors reveals spatial control of the sensitivity and kinetics of signal activation. Proc. Natl Acad. Sci. USA 118, e2109057118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang, D. et al. Enrichment and sensing tumor cells by embedded immunomodulatory DNA hydrogel to inhibit postoperative tumor recurrence. Nat. Commun. 14, 4511 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Guo, Z. et al. Immunostimulatory DNA hydrogel enhances protective efficacy of nanotoxoids against bacterial infection. Adv. Mater. 35, e2211717 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ijäs, H., Hakaste, I., Shen, B., Kostiainen, M. A. & Linko, V. Reconfigurable DNA origami nanocapsule for pH-controlled encapsulation and display of cargo. ACS Nano 13, 5959–5967 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhang, Q. et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano 8, 6633–6643 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Ma, V. P. et al. The magnitude of LFA-1/ICAM-1 forces fine-tune TCR-triggered T cell activation. Sci. Adv. 8, eabg4485 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Simoncelli, S. et al. Multi-color molecular visualization of signaling proteins reveals how C-terminal Src kinase nanoclusters regulate T cell receptor activation. Cell Rep. 33, 108523 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Jo, M. H. et al. Determination of single-molecule loading rate during mechanotransduction in cell adhesion. Science 383, 1374–1379 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brockman, J. M. et al. Live-cell super-resolved PAINT imaging of piconewton cellular traction forces. Nat. Methods 17, 1018–1024 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rosenberg, A. M., Ayres, C. M., Medina-Cucurella, A. V., Whitehead, T. A. & Baker, B. M. Enhanced T cell receptor specificity through framework engineering. Front. Immunol. 15, 1345368 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Abuwatfa, W. H., Pitt, W. G. & Husseini, G. A. Scaffold-based 3D cell culture models in cancer research. J. Biomed. Sci. 31, 7 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kumbhojkar, N. et al. Neutrophils bearing adhesive polymer micropatches as a drug-free cancer immunotherapy. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01180-z (2024).

  67. Kritchevsky, D., Davidson, L. M. & Goodman, G. T. Seasonal variation of serum lipids in the Vervet monkey. Atherosclerosis 68, 151–157 (1987).

    Article  CAS  PubMed  Google Scholar 

  68. Vorselen, D. et al. Microparticle traction force microscopy reveals subcellular force exertion patterns in immune cell-target interactions. Nat. Commun. 11, 20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, J. et al. Profiling the origin, dynamics, and function of traction force in B cell activation. Sci. Signal 11, eaai9192 (2018).

    Article  PubMed  Google Scholar 

  70. Du, F., Liu, Y. G. & Scott, E. A. Immunotheranostic polymersomes modularly assembled from tetrablock and diblock copolymers with oxidation-responsive fluorescence. Cell Mol. Bioeng. 10, 357–370 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim, M. et al. Micro-engineering and nano-engineering approaches to investigate tumour ecosystems. Nat. Rev. Cancer 23, 581–599 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Straehla, J. P. et al. A predictive microfluidic model of human glioblastoma to assess trafficking of blood-brain barrier-penetrant nanoparticles. Proc. Natl Acad. Sci. USA 119, e2118697119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Migueles, S. A. et al. HIV vaccines induce CD8+ T cells with low antigen receptor sensitivity. Science 382, 1270–1276 (2023).

    Article  CAS  PubMed  Google Scholar 

  75. Naulaerts, S. et al. Multiomics and spatial mapping characterizes human CD8+ T cell states in cancer. Sci. Transl. Med. 15, eadd1016 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Chockley, P. J., Ibanez-Vega, J., Krenciute, G., Talbot, L. J. & Gottschalk, S. Synapse-tuned CARs enhance immune cell anti-tumor activity. Nat. Biotechnol. 41, 1434–1445 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Yagüe Relimpio, A. et al. Bottom-up assembled synthetic SARS-CoV-2 miniviruses reveal lipid membrane affinity of omicron variant spike glycoprotein. ACS Nano 17, 23913–23923 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Macher, M., Platzman, I. & Spatz, J. P. Bottom-up assembly of bioinspired, fully synthetic extracellular vesicles. Methods Mol. Biol. 2654, 263–276 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Lipp, C. et al. Microfluidic device combining hydrodynamic and dielectrophoretic trapping for the controlled contact between single micro-sized objects and application to adhesion assays. Lab Chip 23, 3593–3602 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hernandez Bücher, J. E. et al. Bottom-up assembly of target-specific cytotoxic synthetic cells. Biomaterials 285, 121522 (2022).

    Article  PubMed  Google Scholar 

  81. Yang, X. et al. Engineered exosomes as theranostic platforms for cancer treatment. ACS Biomater. Sci. Eng. 9, 5479–5503 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, J. et al. Micropatterned soft hydrogels to study the interplay of receptors and forces in T cell activation. Acta Biomater. 119, 234–246 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Deeg, J. et al. T cell activation is determined by the number of presented antigens. Nano Lett. 13, 5619–5626 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jin, W. et al. T cell activation and immune synapse organization respond to the microscale mechanics of structured surfaces. Proc. Natl Acad. Sci. USA 116, 19835–19840 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tamzalit, F. et al. Interfacial actin protrusions mechanically enhance killing by cytotoxic T cells. Sci. Immunol. 4, eaav5445 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Basu, R. et al. Cytotoxic T cells use mechanical force to potentiate target cell killing. Cell 165, 100–110 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Deng, W. et al. A dual amplification strategy for ultrasensitive electrochemiluminescence immunoassay based on a Pt nanoparticles dotted graphene-carbon nanotubes composite and carbon dots functionalized mesoporous Pt/Fe. Analyst 139, 1713–1720 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Bošković, F. et al. Simultaneous identification of viruses and viral variants with programmable DNA nanobait. Nat. Nanotechnol. 18, 290–298 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions of many investigators whose work could not be cited due to the length limits of this Perspective. We are grateful to K. Bajak for figure design and administrative help. K.G. acknowledges the Max Planck School Matter to Life, supported by the German Federal Ministry of Education and Research (BMBF) in collaboration with the Max Planck Society and Heidelberg University, and funding from ERC starting grant ENSYNC (grant number 101076997). K.G. and M.P. acknowledge funding from the State of Baden-Württemberg for a multi-institutional project on Synthetic Immunology within the Heidelberg Mannheim Health and Life Science Alliance (https://www.health-life-sciences.de/synthetic-immunology). All authors received funding from the Federal Ministry of Education and Research (BMBF) and the Ministry of Science Baden-Württemberg within the framework of the Excellence Strategy of the Federal and State Governments of Germany in support of the Heidelberg University Flagship Initiative Engineering Molecular Systems (FI EMS) Spotlight Project ‘Synthetic Immunology’. This publication was also supported directly by the Ministry of Science, Research and Culture Baden-Württemberg and the Helmholtz Association.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kerstin Göpfrich or Oliver T. Fackler.

Ethics declarations

Competing interests

M.P. is an inventor on patent applications describing the identification of tumour-reactive TCRs and a founder of Tcelltech GmbH.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göpfrich, K., Platten, M., Frischknecht, F. et al. Bottom-up synthetic immunology. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01744-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01744-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing