Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deterministic switching of perpendicular magnetization by out-of-plane anti-damping magnon torques

Abstract

Spin-wave excitations of magnetic moments (or magnons) can transport spin angular momentum in insulating magnetic materials. This property distinguishes magnonic devices from traditional electronics, where power consumption results from electrons’ movement. Recently, magnon torques have been used to switch perpendicular magnetization in the presence of an external magnetic field. Here we present a material system composed of WTe2/antiferromagnetic insulator NiO/ferromagnet CoFeB heterostructures that allows magnetic field-free switching of the perpendicular magnetization. The magnon currents, with a spin polarization canting of −8.5° relative to the sample plane, traverse the 25-nm-thick polycrystalline NiO layer while preserving their original polarization direction, subsequently exerting an out-of-plane anti-damping magnon torque on the ferromagnetic layer. Using this mechanism, we achieve a 190-fold reduction in power consumption in PtTe2/WTe2/NiO/CoFeB heterostructures compared to Bi2Te3/NiO/CoFeB control samples, which only exhibit in-plane magnon torques. Our field-free demonstration contributes to the realization of all-electric, low-power, perpendicular magnetization switching devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observation of out-of-plane anti-damping magnon torques.
Fig. 2: Magnon torque-driven switching of perpendicular magnetization in WTe2 (8 nm)/NiO (25 nm)/CoFeB.
Fig. 3: NiO thickness dependence of spin–orbit torques in WTe2 (8 nm)/NiO (t)/CoFeB.
Fig. 4: Field-free switching of perpendicular magnetization and high spin Hall conductivity in PtTe2 (d)/WTe2 (8-d)/NiO (25 nm)/FM.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and the Supplementary Information. Other relevant data are available from the corresponding authors upon reasonable request.

References

  1. Pirro, P., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Advances in coherent magnonics. Nat. Rev. Mater. 6, 1114–1135 (2021).

    Article  Google Scholar 

  2. Yu, H., Xiao, J. & Schultheiss, H. Magnetic texture based magnonics. Phys. Rep. 905, 1–59 (2021).

    Article  CAS  Google Scholar 

  3. Yuan, H. Y., Cao, Y., Kamra, A., Duine, R. A. & Yan, P. Quantum magnonics: when magnon spintronics meets quantum information science. Phys. Rep. 965, 1–74 (2022).

    Article  Google Scholar 

  4. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  CAS  Google Scholar 

  5. Suresh, A., Bajpai, U., Petrović, M. D., Yang, H. & Nikolić, B. K. Magnon- versus electron-mediated spin-transfer torque exerted by spin current across an antiferromagnetic insulator to switch the magnetization of an adjacent ferromagnetic metal. Phys. Rev. Appl. 15, 034089 (2021).

    Article  CAS  Google Scholar 

  6. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & van Wees, B. J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).

    Article  CAS  Google Scholar 

  8. Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Han, J. et al. Birefringence-like spin transport via linearly polarized antiferromagnetic magnons. Nat. Nanotechnol. 15, 563–568 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Parsonnet, E. et al. Nonvolatile electric field control of thermal magnons in the absence of an applied magnetic field. Phys. Rev. Lett. 129, 087601 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Lee, K. et al. Superluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances. Nat. Nanotechnol. 16, 1337–1341 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Siegrist, F. et al. Light-wave dynamic control of magnetism. Nature 571, 240–244 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Li, J. et al. Spin current from sub-terahertz-generated antiferromagnetic magnons. Nature 578, 70–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Deb, M. et al. Femtosecond laser-excitation-driven high frequency standing spin waves in nanoscale dielectric thin films of iron garnets. Phys. Rev. Lett. 123, 027202 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Bauer, G. E., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Tatara, G. & Kohno, H. Theory of current-driven domain wall motion: spin transfer versus momentum transfer. Phys. Rev. Lett. 92, 086601 (2004).

    Article  PubMed  Google Scholar 

  19. Zhang, S. & Li, Z. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Han, J. et al. Mutual control of coherent spin waves and magnetic domain walls in a magnonic device. Science 366, 1121–1125 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Han, J., Cheng, R., Liu, L., Ohno, H. & Fukami, S. Coherent antiferromagnetic spintronics. Nat. Mater. 22, 684–695 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Fan, Y. et al. Coherent magnon-induced domain-wall motion in a magnetic insulator channel. Nat. Nanotechnol. 18, 1000–1004 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, Y. et al. Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator. Science 366, 1125–1128 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Zhu, D. et al. Sign change of spin–orbit torque in Pt/NiO/CoFeB structures. Phys. Rev. Lett. 128, 217702 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Zheng, D. et al. High-efficiency magnon-mediated magnetization switching in all-oxide heterostructures with perpendicular magnetic anisotropy. Adv. Mater. 34, e2203038 (2022).

    Article  PubMed  Google Scholar 

  26. Shi, G. et al. Room-temperature switching of perpendicular magnetization by magnon torques. Phys. Rev. Appl. 19, 034039 (2023).

    Article  CAS  Google Scholar 

  27. Guo, C. Y. et al. Switching the perpendicular magnetization of a magnetic insulator by magnon transfer torque. Phys. Rev. B 104, 094412 (2021).

    Article  CAS  Google Scholar 

  28. MacNeill, D. et al. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300–305 (2017).

    Article  CAS  Google Scholar 

  29. Shi, S. et al. All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures. Nat. Nanotechnol. 14, 945–949 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Kao, I. H. et al. Deterministic switching of a perpendicularly polarized magnet using unconventional spin–orbit torques in WTe2. Nat. Mater. 21, 1029–1034 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, X. et al. Observation of the antiferromagnetic spin Hall effect. Nat. Mater. 20, 800–804 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Fang, D. et al. Spin–orbit-driven ferromagnetic resonance. Nat. Nanotechnol. 6, 413–417 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Article  PubMed  Google Scholar 

  34. Rezende, S. M., Rodríguez-Suárez, R. L. & Azevedo, A. Diffusive magnonic spin transport in antiferromagnetic insulators. Phys. Rev. B 93, 054412 (2016).

    Article  Google Scholar 

  35. Wu, Y. et al. High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures. Adv. Mater. 29, 1603031 (2017).

    Article  Google Scholar 

  36. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article  PubMed  Google Scholar 

  38. Emori, S., Bauer, U., Ahn, S. M., Martinez, E. & Beach, G. S. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, S. S. L. & Zhang, S. Spin convertance at magnetic interfaces. Phys. Rev. B 86, 214424 (2012).

    Article  Google Scholar 

  40. Cheng, R., Xiao, D. & Zhu, J.-G. Antiferromagnet-based magnonic spin-transfer torque. Phys. Rev. B 98, 020408(R) (2018).

    Article  Google Scholar 

  41. Ross, A. et al. Propagation length of antiferromagnetic magnons governed by domain configurations. Nano Lett. 20, 306–313 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Xu, H. et al. High spin Hall conductivity in large-area type-II Dirac semimetal PtTe2. Adv. Mater. 32, e2000513 (2020).

    Article  PubMed  Google Scholar 

  43. Zhu, L. et al. Strong damping-like spin–orbit torque and tunable Dzyaloshinskii–Moriya interaction generated by low-resistivity Pd1−xPtx alloys. Adv. Funct. Mater. 29, 1805822 (2019).

    Article  Google Scholar 

  44. Shi, S. et al. Observation of the out-of-plane polarized spin current from CVD grown WTe2. Adv. Quantum Technol. 4, 2100038 (2021).

    Article  CAS  Google Scholar 

  45. Nan, T. et al. Controlling spin current polarization through non-collinear antiferromagnetism. Nat. Commun. 11, 4671 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bose, A. et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electron. 5, 267–274 (2022).

    Article  CAS  Google Scholar 

  47. Wang, F. et al. Field-free switching of perpendicular magnetization by two-dimensional PtTe2/WTe2 van der Waals heterostructures with a high spin Hall conductivity. Nat. Mater. 23, 768–774 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Hu, S. et al. Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet. Nat. Commun. 13, 4447 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baek, S. C. et al. Spin currents and spin–orbit torques in ferromagnetic trilayers. Nat. Mater. 17, 509–513 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Ryu, J. et al. Efficient spin–orbit torque in magnetic trilayers using all three polarizations of a spin current. Nat. Electron. 5, 217–223 (2022).

    Article  Google Scholar 

  51. Liu, Y. & Shao, Q. Two-dimensional materials for energy-efficient spin–orbit torque devices. ACS Nano 14, 9389–9407 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Liu, Y. et al. Field-free switching of perpendicular magnetization at room temperature using out-of-plane spins from TaIrTe4. Nat. Electron. 6, 732–738 (2023).

    Article  CAS  Google Scholar 

  53. Cherepov, S. et al. Electric-field-induced spin wave generation using multiferroic magnetoelectric cells. Appl. Phys. Lett. 104, 082403 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation (NRF) Singapore Investigatorship (NRFI06-2020-0015) (H.Y.), NRF Singapore and A*STAR under its Quantum Engineering Programme (NRF2022-QEP2-03-P13) (H.Y.) and SpOT-LITE programme (A*STAR grant, A18A6b0057) through RIE2020 funds (H.Y.).

Author information

Authors and Affiliations

Authors

Contributions

F.W. and H.Y. conceived and designed the experiments. F.W., G.S. and S.Y. grew the samples. F.W. carried out reflection high-energy electron diffraction, atomic force microscopy, transport and switching measurements. G.S. and Y.P. performed ST-FMR measurements and device fabrications. D.Y. performed the Raman, X-ray diffraction and terahertz measurements. H.R.T. carried out the transmission electron microscopy measurements under the supervision of A.S. C.Z. measured hysteresis loops. J.L. calculated the current-induced Oersted field. M.E. provided theoretical support. F.W. analysed the data. F.W. and H.Y. wrote the paper with contributions from all authors. H.Y. supervised the project. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Mehrdad Elyasi or Hyunsoo Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Andrii Chumak, Romain Lebrun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31, Table 1, Notes 1–14 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Shi, G., Yang, D. et al. Deterministic switching of perpendicular magnetization by out-of-plane anti-damping magnon torques. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01741-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01741-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing