Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Even-integer quantum Hall effect in an oxide caused by a hidden Rashba effect

Abstract

In the presence of a high magnetic field, quantum Hall systems usually host both even- and odd-integer quantized states because of lifted band degeneracies. Selective control of these quantized states is challenging but essential to understand the exotic ground states and manipulate the spin textures. Here we demonstrate the quantum Hall effect in Bi2O2Se thin films. In magnetic fields as high as 50 T, we observe only even-integer quantum Hall states, but there is no sign of odd-integer states. However, when reducing the thickness of the epitaxial Bi2O2Se film to one unit cell, we observe both odd- and even-integer states in this Janus (asymmetric) film grown on SrTiO3. By means of a Rashba bilayer model based on the ab initio band structures of Bi2O2Se thin films, we can ascribe the only even-integer states in thicker films to the hidden Rasbha effect, where the local inversion-symmetry breaking in two sectors of the [Bi2O2]2+ layer yields opposite Rashba spin polarizations, which compensate with each other. In the one-unit-cell Bi2O2Se film grown on SrTiO3, the asymmetry introduced by the top surface and bottom interface induces a net polar field. The resulting global Rashba effect lifts the band degeneracies present in the symmetric case of thicker films.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rashba bilayer structure in Bi2O2Se films.
Fig. 2: STEM images and electrical characterization of epitaxial Bi2O2Se films on SrTiO3.
Fig. 3: Even-integer QHE in epitaxial Bi2O2Se films.
Fig. 4: Even-integer QHE in Bi2O2Se nanoflakes.
Fig. 5: Thickness-dependent QHE and quantum oscillations in epitaxial Bi2O2Se films.
Fig. 6: Calculated effective g factors and band structures for Bi2O2Se thin films.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in this paper are present in the Article or its S upplementary Information. Source data are provided with this paper.

References

  1. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  Google Scholar 

  2. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article  CAS  Google Scholar 

  3. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Tsukazaki, A. et al. Quantum Hall effect in polar oxide heterostructures. Science 315, 1388–1391 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Li, L. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 11, 593–597 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Matsubara, Y. et al. Observation of the quantum Hall effect in δ-doped SrTiO3. Nat. Commun. 7, 11631 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Movva, H. C. P. et al. Density-dependent quantum Hall states and Zeeman splitting in monolayer and bilayer WSe2. Phys. Rev. Lett. 118, 247701 (2017).

    Article  PubMed  Google Scholar 

  11. Xu, S. et al. Odd-integer quantum Hall states and giant spin susceptibility in p-type few-layer WSe2. Phys. Rev. Lett. 118, 067702 (2017).

    Article  PubMed  Google Scholar 

  12. Yang, J. et al. Integer and fractional quantum Hall effect in ultrahigh quality few-layer black phosphorus transistors. Nano Lett. 18, 229–234 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Qiu, G. et al. Quantum Hall effect of Weyl fermions in n-type semiconducting tellurene. Nat. Nanotechnol. 15, 585–591 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Sheng, F. et al. Rashba valleys and quantum Hall states in few-layer black arsenic. Nature 593, 56–60 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Bolotin, K. I., Ghahari, F., Shulman, M. D., Stormer, H. L. & Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 462, 196–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Li, L. et al. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol. 10, 608–613 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Fallahazad, B. et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).

    Article  PubMed  Google Scholar 

  19. Pisoni, R. et al. Interactions and magnetotransport through spin-valley coupled Landau levels in monolayer MoS2. Phys. Rev. Lett. 121, 247701 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki, R. et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 9, 611–617 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Du, L. et al. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 3, 193–206 (2021).

    Article  CAS  Google Scholar 

  22. Zhang, X., Liu, Q., Luo, J.-W., Freeman, A. J. & Zunger, A. Hidden spin polarization in inversion-symmetric bulk crystals. Nat. Phys. 10, 387–393 (2014).

    Article  CAS  Google Scholar 

  23. Wu, J. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 12, 530–534 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, F. et al. Phonon signatures for polaron formation in an anharmonic semiconductor. Proc. Natl Acad. Sci. USA 119, e2122436119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan, C. et al. 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616, 66–72 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Yu, A. B. & Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C: Solid State Phys. 17, 6039 (1984).

    Article  Google Scholar 

  27. Luo, J., Munekata, H., Fang, F. F. & Stiles, P. J. Observation of the zero-field spin splitting of the ground electron subband in GaSb-InAs-GaSb quantum wells. Phys. Rev. B 38, 10142–10145 (1988).

    Article  CAS  Google Scholar 

  28. Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

    Article  CAS  Google Scholar 

  29. Murakawa, H. et al. Detection of Berry’s phase in a bulk Rashba semiconductor. Science 342, 1490–1493 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Shcherbakov, D. et al. Layer- and gate-tunable spin-orbit coupling in a high-mobility few-layer semiconductor. Sci. Adv. 7, eabe2892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bihlmayer, G., Noël, P., Vyalikh, D. V., Chulkov, E. V. & Manchon, A. Rashba-like physics in condensed matter. Nat. Rev. Phys. 4, 642–659 (2022).

    Article  Google Scholar 

  32. Liang, Y. et al. Molecular beam epitaxy and electronic structure of atomically thin oxyselenide films. Adv. Mater. 31, 1901964 (2019).

    Article  Google Scholar 

  33. Zhou, X. et al. Step-climbing epitaxy of layered materials with giant out-of-plane lattice mismatch. Adv. Mater. 34, 2202754 (2022).

    Article  CAS  Google Scholar 

  34. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett. 13, 4212–4216 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Neal, A. T., Liu, H., Gu, J. & Ye, P. D. Magneto-transport in MoS2: phase coherence, spin–orbit scattering, and the Hall factor. ACS Nano 7, 7077–7082 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Li, L. et al. Short and long pulse high magnetic field facility at the Wuhan National High Magnetic Field Center. IEEE Trans. Appl. Supercond. 24, 9500404 (2014).

    Article  Google Scholar 

  38. Xie, J. et al. Realisation of the reconfigurable pulsed high magnetic field facility and its scientific application at Wuhan National Pulsed High Magnetic Field Centre. High Voltage 8, 898–906 (2023).

  39. Tan, C. et al. Strain-free layered semiconductors for 2D transistors with on-state current density exceeding 1.3 mA μm–1. Nano Lett. 22, 3770–3776 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, C. et al. Single-crystalline van der Waals layered dielectric with high dielectric constant. Nat. Mater. 22, 832–837 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Luo, J., Munekata, H., Fang, F. F. & Stiles, P. J. Effects of inversion asymmetry on electron energy band structures in GaSb/InAs/GaSb quantum wells. Phys. Rev. B 41, 7685–7693 (1990).

    Article  CAS  Google Scholar 

  42. Schäpers, T. et al. Effect of the heterointerface on the spin splitting in modulation doped InxGa1−xAs/InP quantum wells for B→0. J. Appl. Phys. 83, 4324–4333 (1998).

    Article  Google Scholar 

  43. Schmult, S. et al. Large Bychkov-Rashba spin-orbit coupling in high-mobility GaN/AlxGa1–xN heterostructures. Phys. Rev. B 74, 033302 (2006).

    Article  Google Scholar 

  44. Caviglia, A. D. et al. Tunable Rashba spin-orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Fête, A. et al. Large modulation of the Shubnikov–de Haas oscillations by the Rashba interaction at the LaAlO3/SrTiO3 interface. New J. Phys. 16, 112002 (2014).

    Article  Google Scholar 

  46. Veit, M. J., Arras, R., Ramshaw, B. J., Pentcheva, R. & Suzuki, Y. Nonzero Berry phase in quantum oscillations from giant Rashba-type spin splitting in LaTiO3/SrTiO3 heterostructures. Nat. Commun. 9, 1458 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Murakami, S., Nagaosa, N. & Zhang, S.-C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).

    Article  PubMed  Google Scholar 

  49. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  CAS  Google Scholar 

  50. Ganichev, S. D. et al. Spin-galvanic effect. Nature 417, 153–156 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Mihai Miron, I. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).

    Article  CAS  Google Scholar 

  53. Kaplan, D., Stern, A. & Yan, B. Even integer quantum Hall effect in materials with hidden spin texture. Preprint at https://arxiv.org/abs/2406.03448 (2024).

  54. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    Article  CAS  Google Scholar 

  55. Wu, J. et al. Chemical patterning of high-mobility semiconducting 2D Bi2O2Se crystals for integrated optoelectronic devices. Adv. Mater. 29, 1704060 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Molecular Materials and Nanofabrication Laboratory (MMNL) in the College of Chemistry at Peking University for the use of instruments. This work was supported by the National Key Research and Development Program of China (2022YFA1204900 (H.P.), 2021YFA1202901 (J.H. and C.T.)), the National Natural Science Foundation of China (21920102004 (H.P.), 92365203 (H.Y.), 92164205 (J.W. and C.T.), 52021006 (H.P.), 22205011 (C.T.), 52072168 (H.Y.), 51861145201 (H.Y.), 21733001 (H.P.), 22105009 (J.W.) and 52302180 (J.H.)), Beijing National Laboratory for Molecular Sciences (BNLMS-CXTD-202001 (H.P.)) and the Tencent Foundation (The XPLORER PRIZE (H.P.)). B.Y. acknowledges financial support from the European Research Council (ERC Consolidator Grant ‘NonlinearTopo’, no. 815869) and the Israel Science Foundation (ISF; 2932/21 and 2974/23). J.W. acknowledges support from the Boya Postdoctoral Fellowship. D.K. is supported by the Abrahams Fellowship of the Center for Materials Theory, Rutgers University and the Zuckerman STEM fellowship.

Author information

Authors and Affiliations

Authors

Contributions

H.P., H.Y. and B.Y. conceived the original idea for the project. X.Z., C.T., Y.L. and X.C. synthesized the materials. J.W., X.Z., X.C. and Y.Z. fabricated the devices. X.Z., X.G., R.Z. and P.G. carried out the STEM measurements. J.W. and J.H. carried out the static-magnetic-field transport measurements. Pulsed-magnetic-field transport measurements were performed by J.W., J.H. and C.T. with help from J.Z., G.J., H.Z. and Z.Z. D.K., A.S. and B.Y. carried out the theoretical calculations. J.W., J.H., X.Z., A.S., H.P., B.Y. and H.Y. wrote the manuscript. All authors contributed to the scientific planning and discussions.

Corresponding authors

Correspondence to Binghai Yan, Hongtao Yuan or Hailin Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–36, Tables 1–3 and Sections 1–17.

Source data

Source Data Fig. 2

Source data for Fig. 2d.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5.

Source Data Fig. 6

Source data for Fig. 6b–g.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Huang, J., Kaplan, D. et al. Even-integer quantum Hall effect in an oxide caused by a hidden Rashba effect. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01732-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01732-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing