Abstract
In the presence of a high magnetic field, quantum Hall systems usually host both even- and odd-integer quantized states because of lifted band degeneracies. Selective control of these quantized states is challenging but essential to understand the exotic ground states and manipulate the spin textures. Here we demonstrate the quantum Hall effect in Bi2O2Se thin films. In magnetic fields as high as 50 T, we observe only even-integer quantum Hall states, but there is no sign of odd-integer states. However, when reducing the thickness of the epitaxial Bi2O2Se film to one unit cell, we observe both odd- and even-integer states in this Janus (asymmetric) film grown on SrTiO3. By means of a Rashba bilayer model based on the ab initio band structures of Bi2O2Se thin films, we can ascribe the only even-integer states in thicker films to the hidden Rasbha effect, where the local inversion-symmetry breaking in two sectors of the [Bi2O2]2+ layer yields opposite Rashba spin polarizations, which compensate with each other. In the one-unit-cell Bi2O2Se film grown on SrTiO3, the asymmetry introduced by the top surface and bottom interface induces a net polar field. The resulting global Rashba effect lifts the band degeneracies present in the symmetric case of thicker films.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
All data needed to evaluate the conclusions in this paper are present in the Article or its S upplementary Information. Source data are provided with this paper.
References
Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).
Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).
Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).
Tsukazaki, A. et al. Quantum Hall effect in polar oxide heterostructures. Science 315, 1388–1391 (2007).
Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).
Li, L. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 11, 593–597 (2016).
Matsubara, Y. et al. Observation of the quantum Hall effect in δ-doped SrTiO3. Nat. Commun. 7, 11631 (2016).
Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2017).
Movva, H. C. P. et al. Density-dependent quantum Hall states and Zeeman splitting in monolayer and bilayer WSe2. Phys. Rev. Lett. 118, 247701 (2017).
Xu, S. et al. Odd-integer quantum Hall states and giant spin susceptibility in p-type few-layer WSe2. Phys. Rev. Lett. 118, 067702 (2017).
Yang, J. et al. Integer and fractional quantum Hall effect in ultrahigh quality few-layer black phosphorus transistors. Nano Lett. 18, 229–234 (2018).
Qiu, G. et al. Quantum Hall effect of Weyl fermions in n-type semiconducting tellurene. Nat. Nanotechnol. 15, 585–591 (2020).
Sheng, F. et al. Rashba valleys and quantum Hall states in few-layer black arsenic. Nature 593, 56–60 (2021).
Bolotin, K. I., Ghahari, F., Shulman, M. D., Stormer, H. L. & Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 462, 196–199 (2009).
Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).
Li, L. et al. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol. 10, 608–613 (2015).
Fallahazad, B. et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).
Pisoni, R. et al. Interactions and magnetotransport through spin-valley coupled Landau levels in monolayer MoS2. Phys. Rev. Lett. 121, 247701 (2018).
Suzuki, R. et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 9, 611–617 (2014).
Du, L. et al. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 3, 193–206 (2021).
Zhang, X., Liu, Q., Luo, J.-W., Freeman, A. J. & Zunger, A. Hidden spin polarization in inversion-symmetric bulk crystals. Nat. Phys. 10, 387–393 (2014).
Wu, J. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 12, 530–534 (2017).
Wang, F. et al. Phonon signatures for polaron formation in an anharmonic semiconductor. Proc. Natl Acad. Sci. USA 119, e2122436119 (2022).
Tan, C. et al. 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616, 66–72 (2023).
Yu, A. B. & Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C: Solid State Phys. 17, 6039 (1984).
Luo, J., Munekata, H., Fang, F. F. & Stiles, P. J. Observation of the zero-field spin splitting of the ground electron subband in GaSb-InAs-GaSb quantum wells. Phys. Rev. B 38, 10142–10145 (1988).
Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).
Murakawa, H. et al. Detection of Berry’s phase in a bulk Rashba semiconductor. Science 342, 1490–1493 (2013).
Shcherbakov, D. et al. Layer- and gate-tunable spin-orbit coupling in a high-mobility few-layer semiconductor. Sci. Adv. 7, eabe2892 (2021).
Bihlmayer, G., Noël, P., Vyalikh, D. V., Chulkov, E. V. & Manchon, A. Rashba-like physics in condensed matter. Nat. Rev. Phys. 4, 642–659 (2022).
Liang, Y. et al. Molecular beam epitaxy and electronic structure of atomically thin oxyselenide films. Adv. Mater. 31, 1901964 (2019).
Zhou, X. et al. Step-climbing epitaxy of layered materials with giant out-of-plane lattice mismatch. Adv. Mater. 34, 2202754 (2022).
Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett. 13, 4212–4216 (2013).
Neal, A. T., Liu, H., Gu, J. & Ye, P. D. Magneto-transport in MoS2: phase coherence, spin–orbit scattering, and the Hall factor. ACS Nano 7, 7077–7082 (2013).
Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).
Li, L. et al. Short and long pulse high magnetic field facility at the Wuhan National High Magnetic Field Center. IEEE Trans. Appl. Supercond. 24, 9500404 (2014).
Xie, J. et al. Realisation of the reconfigurable pulsed high magnetic field facility and its scientific application at Wuhan National Pulsed High Magnetic Field Centre. High Voltage 8, 898–906 (2023).
Tan, C. et al. Strain-free layered semiconductors for 2D transistors with on-state current density exceeding 1.3 mA μm–1. Nano Lett. 22, 3770–3776 (2022).
Zhang, C. et al. Single-crystalline van der Waals layered dielectric with high dielectric constant. Nat. Mater. 22, 832–837 (2023).
Luo, J., Munekata, H., Fang, F. F. & Stiles, P. J. Effects of inversion asymmetry on electron energy band structures in GaSb/InAs/GaSb quantum wells. Phys. Rev. B 41, 7685–7693 (1990).
Schäpers, T. et al. Effect of the heterointerface on the spin splitting in modulation doped InxGa1−xAs/InP quantum wells for B→0. J. Appl. Phys. 83, 4324–4333 (1998).
Schmult, S. et al. Large Bychkov-Rashba spin-orbit coupling in high-mobility GaN/AlxGa1–xN heterostructures. Phys. Rev. B 74, 033302 (2006).
Caviglia, A. D. et al. Tunable Rashba spin-orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010).
Fête, A. et al. Large modulation of the Shubnikov–de Haas oscillations by the Rashba interaction at the LaAlO3/SrTiO3 interface. New J. Phys. 16, 112002 (2014).
Veit, M. J., Arras, R., Ramshaw, B. J., Pentcheva, R. & Suzuki, Y. Nonzero Berry phase in quantum oscillations from giant Rashba-type spin splitting in LaTiO3/SrTiO3 heterostructures. Nat. Commun. 9, 1458 (2018).
Murakami, S., Nagaosa, N. & Zhang, S.-C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).
Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).
Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).
Ganichev, S. D. et al. Spin-galvanic effect. Nature 417, 153–156 (2002).
Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).
Mihai Miron, I. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).
Kaplan, D., Stern, A. & Yan, B. Even integer quantum Hall effect in materials with hidden spin texture. Preprint at https://arxiv.org/abs/2406.03448 (2024).
Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).
Wu, J. et al. Chemical patterning of high-mobility semiconducting 2D Bi2O2Se crystals for integrated optoelectronic devices. Adv. Mater. 29, 1704060 (2017).
Acknowledgements
We acknowledge Molecular Materials and Nanofabrication Laboratory (MMNL) in the College of Chemistry at Peking University for the use of instruments. This work was supported by the National Key Research and Development Program of China (2022YFA1204900 (H.P.), 2021YFA1202901 (J.H. and C.T.)), the National Natural Science Foundation of China (21920102004 (H.P.), 92365203 (H.Y.), 92164205 (J.W. and C.T.), 52021006 (H.P.), 22205011 (C.T.), 52072168 (H.Y.), 51861145201 (H.Y.), 21733001 (H.P.), 22105009 (J.W.) and 52302180 (J.H.)), Beijing National Laboratory for Molecular Sciences (BNLMS-CXTD-202001 (H.P.)) and the Tencent Foundation (The XPLORER PRIZE (H.P.)). B.Y. acknowledges financial support from the European Research Council (ERC Consolidator Grant ‘NonlinearTopo’, no. 815869) and the Israel Science Foundation (ISF; 2932/21 and 2974/23). J.W. acknowledges support from the Boya Postdoctoral Fellowship. D.K. is supported by the Abrahams Fellowship of the Center for Materials Theory, Rutgers University and the Zuckerman STEM fellowship.
Author information
Authors and Affiliations
Contributions
H.P., H.Y. and B.Y. conceived the original idea for the project. X.Z., C.T., Y.L. and X.C. synthesized the materials. J.W., X.Z., X.C. and Y.Z. fabricated the devices. X.Z., X.G., R.Z. and P.G. carried out the STEM measurements. J.W. and J.H. carried out the static-magnetic-field transport measurements. Pulsed-magnetic-field transport measurements were performed by J.W., J.H. and C.T. with help from J.Z., G.J., H.Z. and Z.Z. D.K., A.S. and B.Y. carried out the theoretical calculations. J.W., J.H., X.Z., A.S., H.P., B.Y. and H.Y. wrote the manuscript. All authors contributed to the scientific planning and discussions.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–36, Tables 1–3 and Sections 1–17.
Source data
Source Data Fig. 2
Source data for Fig. 2d.
Source Data Fig. 3
Source data for Fig. 3.
Source Data Fig. 4
Source data for Fig. 4.
Source Data Fig. 5
Source data for Fig. 5.
Source Data Fig. 6
Source data for Fig. 6b–g.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, J., Huang, J., Kaplan, D. et al. Even-integer quantum Hall effect in an oxide caused by a hidden Rashba effect. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01732-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41565-024-01732-z