Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Third-order nonlinear Hall effect in a quantum Hall system

Abstract

In two-dimensional systems, perpendicular magnetic fields can induce a bulk band gap and chiral edge states, which gives rise to the quantum Hall effect. The quantum Hall effect is characterized by zero longitudinal resistance (Rxx) and Hall resistance (Rxy) plateaus quantized to h/(υe2) in the linear response regime, where υ is the Landau level filling factor, e is the elementary charge and h is Planck’s constant. Here we explore the nonlinear response of monolayer graphene when tuned to a quantum Hall state. We observe a third-order Hall effect that exhibits a nonzero voltage plateau scaling cubically with the probe current. By contrast, the third-order longitudinal voltage remains zero. The magnitude of the third-order response is insensitive to variations in magnetic field (down to ~5 T) and in temperature (up to ~60 K). Moreover, the third-order response emerges in graphene devices with a variety of geometries, different substrates and stacking configurations. We term the effect third-order nonlinear response of the quantum Hall state and propose that electron–electron interaction between the quantum Hall edge states is the origin of the nonlinear response of the quantum Hall state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of the linear Hall effect and nonlinear Hall effect in the classic and quantum regimes.
Fig. 2: Observation of the third-order nonlinear Hall plateaus within the QHSs υ = ±2.
Fig. 3: Cubic current dependence of the third-order Hall effect within QHSs.
Fig. 4: The effects of magnetic field and temperature on the third-order nonlinear response of QHS.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and the Supplementary Information. Other relevant data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The codes that support this study are available from the corresponding authors upon reasonable request.

References

  1. Hall, E. H. On a new action of the magnet on electric currents. Am. J. Math. 2, 287–292 (1879).

    Article  Google Scholar 

  2. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  Google Scholar 

  3. Gusynin, V. P. & Sharapov, S. G. Unconventional integer quantum Hall effect in graphene. Phys. Rev. Lett. 95, 146801 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Y. et al. Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Lett. 96, 136806 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Jiang, Z., Zhang, Y., Stormer, H. L. & Kim, P. Quantum Hall states near the charge-neutral Dirac point in graphene. Phys. Rev. Lett. 99, 106802 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Checkelsky, J. G., Li, L. & Ong, N. P. Zero-energy state in graphene in a high magnetic field. Phys. Rev. Lett. 100, 206801 (2008).

    Article  PubMed  Google Scholar 

  9. Bolotin, K. I., Ghahari, F., Shulman, M. D., Stormer, H. L. & Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 462, 196–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Du, Z. Z., Lu, H.-Z. & Xie, X. C. Nonlinear Hall effects. Nat. Rev. Phys. 3, 744–752 (2021).

    Article  Google Scholar 

  13. He, P. et al. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states. Nat. Phys. 14, 495–499 (2018).

    Article  CAS  Google Scholar 

  14. He, P. et al. Nonlinear planar Hall effect. Phys. Rev. Lett. 123, 016801 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).

    Article  CAS  Google Scholar 

  16. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  PubMed  Google Scholar 

  19. He, P. et al. Quantum frequency doubling in the topological insulator Bi2Se3. Nat. Commun. 12, 698 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Isobe, H., Xu, S.-Y. & Fu, L. High-frequency rectification via chiral Bloch electrons. Sci. Adv. 6, eaay2497 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lai, S. et al. Third-order nonlinear Hall effect induced by the Berry-connection polarizability tensor. Nat. Nanotechnol. 16, 869–873 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, C. et al. Room-temperature third-order nonlinear Hall effect in Weyl semimetal TaIrTe4. Natl Sci. Rev. 9, nwac020 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ye, X.-G. et al. Orbital polarization and third-order anomalous Hall effect in WTe2. Phys. Rev. B 106, 045414 (2022).

    Article  CAS  Google Scholar 

  24. Zhao, T.-Y. et al. Gate-tunable Berry curvature dipole polarizability in Dirac semimetal Cd3As2. Phys. Rev. Lett. 131, 186302 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, C.-P., Gao, X.-J., Xie, Y.-M., Po, H. C. & Law, K. T. Higher-order nonlinear anomalous Hall effects induced by Berry curvature multipoles. Phys. Rev. B 107, 115142 (2023).

    Article  CAS  Google Scholar 

  26. Xiang, L., Zhang, C., Wang, L. & Wang, J. Third-order intrinsic anomalous Hall effect with generalized semiclassical theory. Phys. Rev. B 107, 075411 (2023).

    Article  CAS  Google Scholar 

  27. Sankar, S. et al. Experimental evidence for a Berry curvature quadrupole in an antiferromagnet. Phys. Rev. X 14, 021046 (2023).

    Google Scholar 

  28. Li, H. et al. Quantum geometry quadrupole-induced third-order nonlinear transport in antiferromagnetic topological insulator MnBi2Te4. Preprint at https://arxiv.org/abs/2307.12313 (2023).

  29. Novoselov, K. S. et al. Room-temperature quantum Hall effect in graphene. Science 315, 1379 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Jeckelmann, B. & Jeanneret, B. The quantum Hall effect as an electrical resistance standard. Rep. Prog. Phys. 64, 1603–1655 (2001).

    Article  CAS  Google Scholar 

  31. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Nachtwei, G. Breakdown of the quantum Hall effect. Physica E 4, 79–101 (1999).

    Article  Google Scholar 

  33. Tian, S. et al. Nonlinear transport of graphene in the quantum Hall regime. 2D Mater. 4, 015003 (2016).

    Article  Google Scholar 

  34. Cage, M. E. et al. Dissipation and dynamic nonlinear behavior in the quantum Hall regime. Phys. Rev. Lett. 51, 1374–1377 (1983).

    Article  CAS  Google Scholar 

  35. Alexander-Webber, J. A. et al. Phase space for the breakdown of the quantum Hall effect in epitaxial graphene. Phys. Rev. Lett. 111, 096601 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Kaplan, D., Holder, T. & Yan, B. General nonlinear Hall current in magnetic insulators beyond the quantum anomalous Hall effect. Nat. Commun. 14, 3053 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Knüppel, P. et al. Nonlinear optics in the fractional quantum Hall regime. Nature 572, 91–94 (2019).

    Article  PubMed  Google Scholar 

  42. de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kane, C. L. Quantized nonlinear conductance in ballistic metals. Phys. Rev. Lett. 128, 076801 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Chklovskii, D. B., Shklovskii, B. I. & Glazman, L. I. Electrostatics of edge channels. Phys. Rev. B 46, 4026–4034 (1992).

    Article  CAS  Google Scholar 

  45. Weis, J. & von Klitzing, K. Metrology and microscopic picture of the integer quantum Hall effect. Phil. Trans. R. Soc. A 369, 3954–3974 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Yankowitz, M. et al. Dynamic band-structure tuning of graphene moiré superlattices with pressure. Nature 557, 404–408 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Y. Zhang, Q. Niu and A. H. MacDonald for helpful discussions. P.H. was sponsored by the National Key Research and Development Program of China (grant numbers 2020YFA0308800 and 2022YFA1403300), National Natural Science Foundation of China (grant numbers 12174063 and U23A2071), Natural Science Foundation of Shanghai (grant numbers 21ZR1404300 and 23ZR1403600) and the start-up funding from Fudan University. J.H. is supported by the NRF Singapore under its NRF-ISF joint programme (grant number NRF2020-NRF-ISF004-3518) and the A*STAR under its MTC Young Investigator Research Grant (YIRG) (grant number M23M7c0124). J.S. is sponsored by the National Natural Science Foundation of China (grant number 11427902). N.N. is supported by JSPS KAKENHI grant numbers JP24H00197 and JP24H02231. N.N. was supported by the RIKEN TRIP initiative.

Author information

Authors and Affiliations

Authors

Contributions

P.H. and J.S. planned the study. P.H. performed the transport measurements and the data analysis. G.K.W.K., J.Y.T., J.H. and J.L. fabricated devices. H.I. and N.N. performed theoretical studies. P.H., H.I., N.N. and J.S. wrote the paper. All authors commented on the paper.

Corresponding authors

Correspondence to Pan He, Hiroki Isobe, Junxiong Hu, Naoto Nagaosa or Jian Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Su-Yang Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Observation of the third-order nonlinear response of QHS in graphene on hBN (Device 2).

a, Schematic structure of the graphene on hBN. b, Optical image of a Hall bar device of graphene on hBN (Device 2), with a channel width W = 1 µm and a source to drain length L = 13 µm (distance between closest arms is 2 µm), respectively. The bar indicates 10 μm. c, e, The first harmonic voltage along the longitudinal \({V}_{x}^{1\omega }\) (c) and transverse directions \({V}_{y}^{1\omega }\) (e) at around the QHSs with υ = ±2. d, f, The third harmonic voltage along the longitudinal \({V}_{x}^{3\omega }\) (d) and transverse directions \({V}_{y}^{3\omega }\) (f) at around the QHSs with υ = ±2. The results in (c-f) were measured under H = 9 T, T = 2 K and I = 1.5 μA. The plateau is highlighted by the orange box.

Source data

Extended Data Fig. 2 Cubic current dependce of the third-order nonlinear response of QHS in Device 2.

a, b, The \({V}_{y}^{3\omega }\) (a) and \({V}_{x}^{3\omega }\) (b) as a function of Vg at around the QHSs (υ = ±2) under different a.c. currents. c, The \({V}_{y}^{3\omega }\) plateau magnitude extracted from (a) as a function of I. The solid curve shows a cubic fitting to the \({V}_{y}^{3\omega }\) (I) curve. d, The plateau of \({V}_{x}^{3\omega }\) extracted from (b) as a function of I. The dashed line indicates the vanishing \({V}_{x}^{3\omega }\). The error bars represent the s.d. Data in (c, d) are presented as mean values ± s.d. The results in (a-d) were measured under H = 9 T and T = 1.7 K in Device 2.

Source data

Extended Data Fig. 3 Observation of the third-order nonlinear response of QHS in a hBN-encapsulated graphene device (Device 3).

a, The longitudinal resistance Rxx (left axis) and the Hall resistance Rxy (right axis) as a function of Vg at T = 1.7 K and H = 9 T. The characteristic plateaus of QHE at filling factor υ = ±2 are well defined with Rxy = ±h/2e2 and Rxx = 0. The device image is shown in the inset. The current channel width W = 1 μm and the source to drain length L = 6 μm. The bar indicates 5 μm. b, c, The \({V}_{x}^{3\omega }\) (b) and \({V}_{y}^{3\omega }\) (c) as a function of Vg at around the QHSs (υ = +2) under different a.c. currents. d, The \({V}_{y}^{3\omega }\) (\({V}_{x}^{3\omega }\)) plateau magnitude extracted from (b, c) as a function of I. The error bars represent the s.d. Data are presented as mean values ± s.d. The solid curve shows a cubic fitting to the \({V}_{y}^{3\omega }\) (I). The dashed line indicates the vanishing \({V}_{x}^{3\omega }\). e, f, The \({V}_{y}^{3\omega }\) as a function of Vg at around the QHS (υ = +2) under different magnetic fields (e) and temperatures (f). The plateaus are marked by a dashed line in (e, f), indicating the same height under different magnetic fields and temperatures.

Extended Data Fig. 4 Observation of the third-order nonlinear response of QHS in a circular graphene device (Device 4).

a, Optical image of the circular graphene device encapsulated by hBN with a diameter D = 6 μm. b, The longitudinal resistance Rxx (left axis) and the Hall resistance Rxy (right axis) as a function of Vg. c, d, The \({V}_{x}^{3\omega }\) (c) and \({V}_{y}^{3\omega }\) (d) as a function of Vg under different a.c. currents at the QHS υ = +2. A finite plateau of \({V}_{y}^{3\omega }\) was found in the region 2 V < Vg < 6 V, where the corresponding \({V}_{x}^{3\omega }\) is zero. e, The magnitude of third-order response plateau as a function of I. The solid curve shows a cubic fitting to \({V}_{y}^{3\omega }(I)\). The dashed line indicates the vanishing \({V}_{x}^{3\omega }\) at different currents. The results in (bd) were measured at T = 1.7 K and H = 12 T.

Source data

Extended Data Fig. 5 Observation of the third-order nonlinear response of QHS with υ = ±2 and ± 6 in a graphene device SiO2/Si (Device 6).

a, Optical image of the graphene device supported by SiO2/Si substrate with a width of 4 μm. b, The longitudinal resistance Rxx (left axis) and the Hall resistance Rxy (right axis) as a function of Vg. c, d, The \({V}_{y}^{3\omega }\) (c) and \({V}_{x}^{3\omega }\) (d) as a function of Vg under different a.c. currents at the QHS υ = ±2. A finite plateau of \({V}_{y}^{3\omega }\) was found, where the corresponding \({V}_{x}^{3\omega }\) is zero. e, The magnitudes of \({V}_{y}^{3\omega }\) plateau as a function of I. The solid curve shows a cubic fitting to \({V}_{y}^{3\omega }(I)\). f, The vanishing \({V}_{x}^{3\omega }\) at different currents. The error bars represent the s.d. Data in (e, f) are presented as mean values ± s.d. g, h, The Hall resistance Rxy (left axis) and the \({V}_{y}^{3\omega }\) (right axis) as a function of Vg covering υ = ±2 and ±6 at H = 9 T (g) and H = -9T (h).

Source data

Extended Data Fig. 6 Observation of the third-order nonlinear response of QHS with υ = ±2 and ± 6 in hBN-encapsulated graphene devices (Devices 7 and 9).

a, b, The \({V}_{y}^{1\omega }\) (a) and \({V}_{y}^{3\omega }\) (b) as a function of Vg covering the QHSs with υ = ±2 and ±6 at H = ± 9 T, T = 1.7 K and I = 5 μA in Device 9. The ratio \({V}_{y}^{3\omega }\)(υ = +2)/\({V}_{y}^{3\omega }\)(υ = +6) = -25.5 μV/-2.6 μV = 9.8 at H = +9 T and \({V}_{y}^{3\omega }\)(υ = −2)/\({V}_{y}^{3\omega }\)(υ = -6) = 25.3 μV/2.6 μV = 9.7 at H = -9 T, showing a good agreement with the theory of 1/υ2 dependence. c, d, The \({V}_{y}^{1\omega }\) (c) and \({V}_{y}^{3\omega }\) (d) as a function of Vg covering the QHSs with υ = ±2 and ±6 at H = ± 9 T, T = 1.7 K and I = 5 μA in Device 7. The ratio \({V}_{y}^{3\omega }\)(υ = ±2)/\({V}_{y}^{3\omega }\)(υ = ±6) close to 9 is also observed in this device.

Source data

Extended Data Table 1 Summary of the results in different devices

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, Notes 1–3 and references.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Table 1

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, P., Isobe, H., Koon, G.K.W. et al. Third-order nonlinear Hall effect in a quantum Hall system. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01730-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01730-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing