Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrically tunable space–time metasurfaces at optical frequencies

Abstract

Active metasurfaces enable dynamic manipulation of the scattered electromagnetic wavefront by spatially varying the phase and amplitude across arrays of subwavelength scatterers, imparting momentum to outgoing light. Similarly, periodic temporal modulation of active metasurfaces allows for manipulation of the output frequency of light. Here we combine spatial and temporal modulation in electrically modulated reflective metasurfaces operating at 1,530 nm to generate and diffract a spectrum of sidebands at megahertz frequencies. Temporal modulation with tailored waveforms enables the design of a spectrum of sidebands. By impressing a spatial phase gradient on the metasurface, we can diffract selected combinations of sideband frequencies. Combining active temporal and spatial variation can enable unique optical functions, such as frequency mixing, harmonic beam steering or shaping, and breaking of Lorentz reciprocity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrically controlled space–time metasurfaces.
Fig. 2: ITO-based plasmonic metasurface.
Fig. 3: Time modulation and waveform optimization.
Fig. 4: Diffraction of a single harmonic.
Fig. 5: Space–time modulation for arbitrary control over the spectral and spatial properties of light.

Similar content being viewed by others

Data availability

The authors declare that data supporting the findings of this study are available within the article and its Supplementary Information files. All the relevant data are available from the corresponding author upon request.

References

  1. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Sun, S. et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 12, 6223–6229 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Wong, A. M. H. & Eleftheriades, G. V. Perfect anomalous reflection with a bipartite Huygens’ metasurface. Phys. Rev. X 8, 011036 (2018).

    CAS  Google Scholar 

  4. Wang, X. et al. Simultaneous realization of anomalous reflection and transmission at two frequencies using bi-functional metasurfaces. Sci. Rep. 8, 1876 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Deng, Y., Wu, C., Meng, C., Bozhevolnyi, S. I. & Ding, F. Functional metasurface quarter-wave plates for simultaneous polarization conversion and beam steering. ACS Nano 15, 18532–18540 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to–orbital angular momentum conversion of light. Science 358, 896–901 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Balthasar Mueller, J. P., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Hail, C. U., Michel, A. U., Poulikakos, D. & Eghlidi, H. Optical metasurfaces: evolving from passive to adaptive. Adv. Opt. Mater. 7, 1801786 (2019).

    Article  Google Scholar 

  12. Thureja, P. et al. Toward a universal metasurface for optical imaging, communication, and computation. Nanophotonics 11, 3745–3768 (2022).

    Article  CAS  Google Scholar 

  13. Yang, J., Gurung, S., Bej, S., Ni, P. & Howard Lee, H. W. Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications. Rep. Prog. Phys. 85, 036101 (2022).

    Article  Google Scholar 

  14. Huang, Y. W. et al. Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Wu, P. C. et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun. 10, 3654 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shcherbakov, M. R. et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat. Commun. 8, 17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Klopfer, E., Delgado, H. C., Dagli, S., Lawrence, M. & Dionne, J. A. A thermally controlled high-Q metasurface lens. Appl. Phys. Lett. 122, 221701 (2023).

    Article  CAS  Google Scholar 

  18. Ou, J. Y., Plum, E., Jiang, L. & Zheludev, N. I. Reconfigurable photonic metamaterials. Nano Lett. 11, 2142–2144 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Arbabi, E. et al. MEMS-tunable dielectric metasurface lens. Nat. Commun. 9, 812 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Eaves-Rathert, J. et al. Dynamic color tuning with electrochemically actuated TiO2 metasurfaces. Nano Lett. 22, 1626–1632 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Shirmanesh, G. K., Sokhoyan, R., Wu, P. C. & Atwater, H. A. Electro-optically tunable multifunctional metasurfaces. ACS Nano 14, 6912–6920 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Tirole, R. et al. Double-slit time diffraction at optical frequencies. Nat. Phys. 19, 999–1002 (2023).

    Article  CAS  Google Scholar 

  23. Wu, Z. & Grbic, A. Serrodyne frequency translation using time-modulated metasurfaces. IEEE Trans. Antennas Propag. 68, 1599–1606 (2020).

    Article  Google Scholar 

  24. Zhang, L. et al. Space–time-coding digital metasurfaces. Nat. Commun. 9, 4334 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cardin, A. E. et al. Surface-wave-assisted nonreciprocity in spatio-temporally modulated metasurfaces. Nat. Commun. 11, 1469 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo, X., Ding, Y., Duan, Y. & Ni, X. Nonreciprocal metasurface with space–time phase modulation. Light. Sci. Appl. 8, 123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shaltout, A., Kildishev, A. & Shalaev, V. Time-varying metasurfaces and Lorentz non-reciprocity. Opt. Mater. Express 5, 2459 (2015).

    Article  Google Scholar 

  28. Hadad, Y., Sounas, D. L. & Alu, A. Space–time gradient metasurfaces. Phys. Rev. B 92, 100304(R) (2015).

    Article  Google Scholar 

  29. Taravati, S. & Eleftheriades, G. V. Generalized space–time-periodic diffraction gratings: theory and applications. Phys. Rev. Appl. 12, 024026 (2019).

    Article  CAS  Google Scholar 

  30. Wang, X., Asadchy, V. S., Fan, S. & Tretyakov, S. A. Space–time metasurfaces for power combining of waves. ACS Photonics 8, 3034–3041 (2021).

    Article  CAS  Google Scholar 

  31. Salary, M. M. & Mosallaei, H. Time-modulated conducting oxide metasurfaces for adaptive multiple access optical communication. IEEE Trans. Antennas Propag. 68, 1628–1642 (2020).

    Article  Google Scholar 

  32. Sabri, R., Salary, M. M. & Mosallaei, H. Quasi‐static and time‐modulated optical phased arrays: beamforming analysis and comparative study. Adv. Photonics Res. 2, 2100034 (2021).

    Article  Google Scholar 

  33. Taravati, S., Chamanara, N. & Caloz, C. Nonreciprocal electromagnetic scattering from a periodically space–time modulated slab and application to a quasisonic isolator. Phys. Rev. B 96, 165144 (2017).

    Article  Google Scholar 

  34. Taravati, S. Aperiodic space–time modulation for pure frequency mixing. Phys. Rev. B 97, 115131 (2018).

    Article  CAS  Google Scholar 

  35. Tien, P. K. Parametric amplification and frequency mixing in propagating circuits. J. Appl. Phys. 29, 1347–1357 (1958).

    Article  Google Scholar 

  36. Zhang, L. & Cui, T. J. Space-time-coding digital metasurfaces: principles and applications. Research 2021, 9802673 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang, L. et al. Breaking reciprocity with space–time‐coding digital metasurfaces. Adv. Mater. 31, 1904069 (2019).

    Article  CAS  Google Scholar 

  38. Karimi, M., Alam, M. Z., Upham, J., Reshef, O. & Boyd, R. W. Time-varying gradient metasurface with applications in all-optical beam steering. Nanophotonics 12, 1733–1740 (2023).

    Article  Google Scholar 

  39. Lustig, E. et al. Time-refraction optics with single cycle modulation. Nanophotonics 12, 2221–2230 (2023).

    Article  CAS  Google Scholar 

  40. Salary, M. M., Farazi, S. & Mosallaei, H. A dynamically modulated all‐dielectric metasurface doublet for directional harmonic generation and manipulation in transmission. Adv. Opt. Mater. 7, 1900843 (2019).

    Article  CAS  Google Scholar 

  41. Kafaie Shirmanesh, G., Sokhoyan, R., Pala, R. A. & Atwater, H. A. Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability. Nano Lett. 18, 2957–2963 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Amin, R. et al. Heterogeneously integrated ITO plasmonic Mach–Zehnder interferometric modulator on SOI. Sci. Rep. 11, 1287 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu, B., Lv, H., Zhang, Y., Zhang, Y. & Liu, C. Comparison of HfAlO, HfO2/Al2O3, and HfO2 on n-type GaAs using atomic layer deposition. Superlattices Microstruct. 99, 54–57 (2016).

    Article  CAS  Google Scholar 

  44. Gui, Y. et al. 100 GHz micrometer-compact broadband monolithic ITO Mach–Zehnder interferometer modulator enabling 3500 times higher packing density. Nanophotonics 11, 4001–4009 (2022).

    Article  CAS  Google Scholar 

  45. Amin, R. et al. Sub-wavelength GHz-fast broadband ITO Mach–Zehnder modulator on silicon photonics. Optica 7, 333 (2020).

    Article  CAS  Google Scholar 

  46. Sabri, R., Salary, M. M. & Mosallaei, H. Broadband continuous beam-steering with time-modulated metasurfaces in the near-infrared spectral regime. APL Photonics 6, 086109 (2021).

    Article  CAS  Google Scholar 

  47. Castaldi, G. et al. Joint multi‐frequency beam shaping and steering via space–time‐coding digital metasurfaces. Adv. Funct. Mater. 31, 2007620 (2021).

    Article  CAS  Google Scholar 

  48. Xu, B. H. et al. Multichannel metasurfaces with frequency‐direction multiplexed amplitude and phase modulations. Adv. Opt. Mater. 11, 2301299 (2023).

    Article  CAS  Google Scholar 

  49. Sabri, R., Forouzmand, A. & Mosallaei, H. Multi-wavelength voltage-coded metasurface based on indium tin oxide: independently and dynamically controllable near-infrared multi-channels. Opt. Express 28, 3464 (2020).

    Article  PubMed  Google Scholar 

  50. Taravati, S. & Eleftheriades, G. V. Microwave space–time-modulated metasurfaces. ACS Photonics 9, 305–318 (2022).

    Article  CAS  Google Scholar 

  51. Hadad, Y., Soric, J. C. & Alu, A. Breaking temporal symmetries for emission and absorption. Proc. Natl Acad. Sci. USA 113, 3471–3475 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Taravati, S. & Eleftheriades, G. V. Full-duplex nonreciprocal beam steering by time-modulated phase-gradient metasurfaces. Phys. Rev. Appl. 14, 014027 (2020).

    Article  CAS  Google Scholar 

  53. Benea-Chelmus, I.-C. et al. Gigahertz free-space electro-optic modulators based on Mie resonances. Nat. Commun. 13, 3170 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research Meta-Imaging MURI grant no. FA9550-21-1-0312 (J.S., P.T., M.G., R.S., I.H. and H.A.A.) and DARPA EXTREME (H.A.A.). J.S. acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Postgraduate Scholarship – Doctoral program. P.T. acknowledges support from Meta Platforms, Inc., through the PhD fellowship #C-834952. We are grateful to Caltech colleagues O. Painter and A. Emami for support with waveform generation instrumentation. We further thank C. U. Hail, M. D. Kelzenberg and P. R. Jahelka for technical support and discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.S., P.T., M.Y.G., R.S. and H.A.A. conceived the ideas for this research project. J.S. and P.T. fabricated and characterized the active metasurfaces. J.S. and M.Y.G. built the experimental setup for time-modulation. J.S. and P.T. performed quasi-static and time-modulated measurements. J.S. built the setup for and performed the space–time measurements. J.S. created the real-time waveform optimization algorithm, with inputs from P.T. J.S. and M.Y.G. performed the space–time calculations. I.H. and P.T. designed the electrical PCB. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Harry A. Atwater.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Patrice Genevet, Guangwei Hu and Xingjie Ni for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–9 including detailed discussion and Supplementary Figs. 1–8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sisler, J., Thureja, P., Grajower, M.Y. et al. Electrically tunable space–time metasurfaces at optical frequencies. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01728-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01728-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing