Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multimodal smart systems reprogramme macrophages and remove urate to treat gouty arthritis

Abstract

Gouty arthritis is a chronic and progressive disease characterized by high urate levels in the joints and by an inflammatory immune microenvironment. Clinical data indicate that urate reduction therapy or anti-inflammatory therapy alone often fails to deliver satisfactory outcomes. Here we have developed a smart biomimetic nanosystem featuring a ‘shell’ composed of a fusion membrane derived from M2 macrophages and exosomes, which encapsulates liposomes loaded with a combination of uricase, platinum-in-hyaluronan/polydopamine nanozyme and resveratrol. The nanosystem targets inflamed joints and promotes the accumulation of anti-inflammatory macrophages locally, while the uricase and the nanozyme reduce the levels of urate within the joints. Additionally, site-directed near-infrared irradiation provides localized mild thermotherapy through the action of platinum and polydopamine, initiating heat-induced tissue repair. Combined use of these components synergistically enhances overall outcomes, resulting in faster recovery of the damaged joint tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The nanocarrier used to treat GA.
Fig. 2: Characterization of PtHD.
Fig. 3: Characterization of D-N[EM2].
Fig. 4: Effects of D-N[EM2] on RAW 264.7 or HUVEC cells.
Fig. 5: Pharmacodynamics, pharmacokinetics and safety evaluation of D-N[EM2].
Fig. 6: Therapeutic mechanisms of D-N[EM2] for HUA and GA at molecular and protein levels.

Similar content being viewed by others

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD 051823. The raw data that support the graphs in Supplementary Figs. 28 and 3138 are available in the Supplementary Data. Source data are provided with this paper.

References

  1. Dehlin, M., Jacobsson, L. & Roddy, E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 16, 380–390 (2020).

    Article  PubMed  Google Scholar 

  2. Cabău, G., Crișan, T. O., Klück, V., Popp, R. A. & Joosten, L. A. B. Urate-induced immune programming: consequences for gouty arthritis and hyperuricemia. Immunol. Rev. 294, 92–105 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Choi, H. K., McCormick, N. & Yokose, C. Excess comorbidities in gout: the causal paradigm and pleiotropic approaches to care. Nat. Rev. Rheumatol. 18, 97–111 (2021).

    Article  PubMed  Google Scholar 

  4. Yang, L. et al. Biomimetic polysaccharide-cloaked lipidic nanovesicles/microassemblies for improving the enzymatic activity and prolonging the action time for hyperuricemia treatment. Nanoscale 12, 15222–15235 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Sands, E. et al. Tolerogenic nanoparticles mitigate the formation of anti-drug antibodies against PEGylated uricase in patients with hyperuricemia. Nat. Commun. 13, 272 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, R. et al. M2 macrophage hybrid membrane-camouflaged targeted biomimetic nanosomes to reprogram inflammatory microenvironment for enhanced enzyme-thermo-immunotherapy. Adv. Mater. 35, e2304123 (2023).

    Article  PubMed  Google Scholar 

  7. Qaseem, A., Harris, R. P. & Forciea, M. A. Management of acute and recurrent gout: a clinical practice guideline from the American college of physicians. Ann. Intern. Med. 166, 58–68 (2016).

    Article  PubMed  Google Scholar 

  8. van Durme, C. M. P. G. et al. Non-steroidal anti-inflammatory drugs for acute gout. Cochrane Database Sys. Rev. 2021, CD010120 (2021).

    Google Scholar 

  9. Gao, Z.-S. et al. Berberine-loaded M2 macrophage-derived exosomes for spinal cord injury therapy. Acta Biomater. 126, 211–223 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Hooftman, A. et al. Macrophage fumarate hydratase restrains mtRNA-mediated interferon production. Nature 615, 490–498 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, R. et al. Exosomes derived from M2b macrophages attenuate DSS-induced colitis. Front. Immunol. 10, 2346 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, H. et al. M2-type exosomes nanoparticles for rheumatoid arthritis therapy via macrophage re-polarization. J. Control. Release 341, 16–30 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, Y. et al. Macrophage membrane biomimetic drug delivery system: for inflammation targeted therapy. J. Drug Target. 31, 229–242 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Thamphiwatana, S. et al. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proc. Natl Acad. Sci. USA 114, 11488–11493 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun, T. et al. Amelioration of ulcerative colitis via inflammatory regulation by macrophage-biomimetic nanomedicine. Theranostics 10, 10106–10119 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pedone, D., Moglianetti, M., De Luca, E., Bardi, G. & Pompa, P. P. Platinum nanoparticles in nanobiomedicine. Chem. Soc. Rev. 46, 4951–4975 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Lin, A. et al. Self-cascade uricase/catalase mimics alleviate acute gout. Nano Lett. 22, 508–516 (2021).

    Article  PubMed  Google Scholar 

  19. Zhou, D. et al. Orally administered platinum nanomarkers for urinary monitoring of inflammatory bowel disease. ACS Nano 16, 18503–18514 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. He, S.-B. et al. Sodium alginate modified platinum nanozymes with highly efficient and robust oxidase-like activity for antioxidant capacity and analysis of proanthocyanidins. Front. Chem. 8, 654 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu, J. et al. Synergistic enhancement of immunological responses triggered by hyperthermia sensitive Pt NPs via NIR laser to inhibit cancer relapse and metastasis. Bioact. Mater. 7, 389–400 (2022).

    CAS  PubMed  Google Scholar 

  22. Yu, H. et al. Biomimetic hybrid membrane-coated xuetongsu assisted with laser irradiation for efficient rheumatoid arthritis therapy. ACS Nano 16, 502–521 (2021).

    Article  PubMed  Google Scholar 

  23. Zhang, M. et al. Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment. Mater. Today Bio 14, 100223 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dong, Y., Cao, W. & Cao, J. Treatment of rheumatoid arthritis by phototherapy: advances and perspectives. Nanoscale 13, 14591–14608 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Bonkowski, M. S. & Sinclair, D. A. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol. 17, 679–690 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singh, A. P. et al. Health benefits of resveratrol: evidence from clinical studies. Med. Res. Rev. 39, 1851–1891 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Fan, W., Chen, S., Wu, X., Zhu, J. & Li, J. Resveratrol relieves gouty arthritis by promoting mitophagy to inhibit activation of NLRP3 inflammasomes. J. Inflamm. Res. 14, 3523–3536 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schlesinger, N., Padnick-Silver, L. & LaMoreaux, B. Enhancing the response rate to recombinant uricases in patients with gout. BioDrugs 36, 95–103 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bao, Y.-W., Hua, X.-W., Chen, X. & Wu, F.-G. Platinum-doped carbon nanoparticles inhibit cancer cell migration under mild laser irradiation: multi-organelle-targeted photothermal therapy. Biomaterials 183, 30–42 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, D. et al. Erythrocyte–cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano 12, 5241–5252 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Yuan, D. et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 142, 1–12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cai, R. & Chen, C. The crown and the scepter: roles of the protein corona in nanomedicine. Adv. Mater. 31, e1805740 (2018).

    Article  PubMed  Google Scholar 

  33. Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Tardito, S. et al. Macrophage M1/M2 polarization and rheumatoid arthritis: a systematic review. Autoimmun. Rev. 18, 102397 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, C. et al. Microfluidic sonication to assemble exosome membrane-coated nanoparticles for immune evasion-mediated targeting. Nano Lett. 19, 7836–7844 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Polanco, J. C., Hand, G. R., Briner, A., Li, C. & Götz, J. Exosomes induce endolysosomal permeabilization as a gateway by which exosomal tau seeds escape into the cytosol. Acta Neuropathol. 141, 235–256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, Q. et al. Targeted immunomodulation therapy for cardiac repair by platelet membrane engineering extracellular vesicles via hitching peripheral monocytes. Biomaterials 284, 121529 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Keller, M. D. et al. Decoy exosomes provide protection against bacterial toxins. Nature 579, 260–264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu, E., Saltzman, W. M. & Piotrowski-Daspit, A. S. Escaping the endosome: assessing cellular trafficking mechanisms of non-viral vehicles. J. Control. Release 335, 465–480 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Qiu, C. et al. Advanced strategies for overcoming endosomal/lysosomal barrier in nanodrug delivery. Research 6, 0148 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, J. et al. Mitochondrial-targeted delivery of polyphenol-mediated antioxidases complexes against pyroptosis and inflammatory diseases. Adv. Mater. 35, e2208571 (2023).

    Article  PubMed  Google Scholar 

  42. Wang, Y. et al. Resveratrol mediates mechanical allodynia through modulating inflammatory response via the TREM2-autophagy axis in SNI rat model. J. Neuroinflammation 17, 311 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tang, Q. et al. Genetically engineering cell membrane-coated BTO nanoparticles for MMP2-activated piezocatalysis-immunotherapy. Adv. Mater. 35, e2300964 (2023).

    Article  PubMed  Google Scholar 

  44. Wei, Z., Oh, J., Flavell, R. A. & Crawford, J. M. LACC1 bridges NOS2 and polyamine metabolism in inflammatory macrophages. Nature 609, 348–353 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou, B., Lu, J. G., Siddu, A., Wernig, M. & Südhof, T. C. Synaptogenic effect of APP-Swedish mutation in familial Alzheimer’s disease. Sci. Transl. Med. 14, eabn9380 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tang, X. et al. Long noncoding RNA LEENE promotes angiogenesis and ischemic recovery in diabetes models. J. Clin. Invest. 133, e161759 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Holick, M. F. et al. Genomic or non-genomic? A question about the pleiotropic roles of vitamin D in inflammatory-based diseases. Nutrients 15, 767 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, K. et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell 180, 941–955.e920 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Ference, B. A. et al. Mendelian randomization study of ACLY and cardiovascular disease. N. Engl. J. Med. 380, 1033–1042 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Newman-Tancredi, A., Depoortère, R. Y., Kleven, M. S., Kołaczkowski, M. & Zimmer, L. Translating biased agonists from molecules to medications: serotonin 5-HT1A receptor functional selectivity for CNS disorders. Pharmacol. Ther. 229, 107937 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Wedell-Neergaard, A.-S. et al. Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial. Cell Metab. 29, 844–855.e843 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Nakka, K. et al. JMJD3 activated hyaluronan synthesis drives muscle regeneration in an inflammatory environment. Science 377, 666–669 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Muendlein, H. I. et al. Neutrophils and macrophages drive TNF-induced lethality via TRIF/CD14-mediated responses. Sci. Immunol. 7, eadd0665 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sobolewski, C. et al. S100A11/ANXA2 belongs to a tumour suppressor/oncogene network deregulated early with steatosis and involved in inflammation and hepatocellular carcinoma development. Gut 69, 1841–1854 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Yu, Z. et al. TRIM41 is required to innate antiviral response by polyubiquitinating BCL10 and recruiting NEMO. Signal Transduct. Target. Ther. 6, 90 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Luo, L. et al. Rab8a interacts directly with PI3Kγ to modulate TLR4-driven PI3K and mTOR signalling. Nat. Commun. 5, 4407 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Andonian, B. J. et al. Altered skeletal muscle metabolic pathways, age, systemic inflammation, and low cardiorespiratory fitness associate with improvements in disease activity following high-intensity interval training in persons with rheumatoid arthritis. Arthritis Res. Ther. 23, 187 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pezone, A. et al. Inflammation and DNA damage: cause, effect or both. Nat. Rev. Rheumatol. 19, 200–211 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Zhao, Y., Simon, M., Seluanov, A. & Gorbunova, V. DNA damage and repair in age-related inflammation. Nat. Rev. Immunol. 23, 75–89 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sun, L. et al. Clodronate-loaded liposomal and fibroblast-derived exosomal hybrid system for enhanced drug delivery to pulmonary fibrosis. Biomaterials 271, 120761 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Hu, S. et al. Platelet membrane and stem cell exosome hybrids enhance cellular uptake and targeting to heart injury. Nano Today 39, 101210 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liang, Y. et al. Chondrocyte-specific genomic editing enabled by hybrid exosomes for osteoarthritis treatment. Theranostics 12, 4866–4878 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mondal, J. et al. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J. Control. Release 353, 1127–1149 (2023).

    Article  CAS  PubMed  Google Scholar 

  64. Lin, Y. et al. Exosome–liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv. Sci. 5, 1700611 (2018).

    Article  Google Scholar 

  65. Schlesinger, N., Pérez-Ruiz, F. & Lioté, F. Mechanisms and rationale for uricase use in patients with gout. Nat. Rev. Rheumatol. 19, 640–649 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Science Fund for Excellent Young Scholars (82022070, L.Z.), Chongqing Technology Innovation and Application Development Special Major Project (CSTB2023TIAD-STX0003, J.Z.), Chongqing Science and Technology Committee and Chongqing Education Committee (CSTB2022NSCQ-LZX0057, J.Z.), Chongqing Education Committee (cqmudstd202216, J.Z.; CYS21236, J.X.; CYS23358, J.Z.), CQMU Program for Youth Innovation in Future Medicine (W0153, J.Z.) and Foundation for Distinguished Professor of Chongqing Medical University (202024, J.Z.).

Author information

Authors and Affiliations

Authors

Contributions

J.X., Q.T., L.Z. and J.Z. designed the experiments, analysed the data and wrote the paper. J.X., M.W., J.Y. and D.Z. performed most of the experiments. Yingju Liu, X.Y. and Yuying Liu assisted with animal and cellular experiments. D.H. and D.P. assisted with analysis experiments and data analysis. Q.T., L.Z. and J.Z. supervised the project.

Corresponding authors

Correspondence to Qunyou Tan, Ling Zhang or Jingqing Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Dongquan Shi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–42, Tables 1–8, Abbreviations, Discussion, Methods and References.

Reporting Summary

Supplementary Video 1

Gait video of sham at 6 h.

Supplementary Video 2

Gait video of MSU at 6 h.

Supplementary Video 3

Gait video of URI at 6 h.

Supplementary Video 4

Gait video of D-N[EM2] at 6 h.

Supplementary Video 5

Gait video of D-N[EM2] + SL at 6 h.

Supplementary Video 6

Gait video of D-N[EM2] + QL at 6 h.

Supplementary Data 1

P values of proteomics in Supplementary Figs. 28 and 31–38.

Source data

Source Data Fig. 3

Unmodified gels and haemolysis assay for Fig. 3d–g.

Source Data Fig. 6

Unmodified western blots for Fig. 6f.

Source Data Fig. 6

P values of proteomics in Fig. 6e,g,h.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Wu, M., Yang, J. et al. Multimodal smart systems reprogramme macrophages and remove urate to treat gouty arthritis. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01715-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01715-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research