Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Charge-transfer contacts for the measurement of correlated states in high-mobility WSe2

Abstract

Two-dimensional semiconductors, such as transition metal dichalcogenides, have demonstrated tremendous promise for the development of highly tunable quantum devices. Realizing this potential requires low-resistance electrical contacts that perform well at low temperatures and low densities where quantum properties are relevant. Here we present a new device architecture for two-dimensional semiconductors that utilizes a charge-transfer layer to achieve large hole doping in the contact region, and implement this technique to measure the magnetotransport properties of high-purity monolayer WSe2. We measure a record-high hole mobility of 80,000 cm2 V–1 s–1 and access channel carrier densities as low as 1.6 × 1011 cm−2, an order of magnitude lower than previously achievable. Our ability to realize transparent contact to high-mobility devices at low density enables transport measurements of correlation-driven quantum phases including the observation of a low-temperature metal–insulator transition in a density and temperature regime where Wigner crystal formation is expected and the observation of the fractional quantum Hall effect under large magnetic fields. The charge-transfer contact scheme enables the discovery and manipulation of new quantum phenomena in two-dimensional semiconductors and their heterostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Charge-transfer contact architecture.
Fig. 2: Transport properties of low-density WSe2.
Fig. 3: Low-density MIT.
Fig. 4: Observation of FQHE.

Similar content being viewed by others

Data availability

The data relevant to figures in the main text are available via Zenodo at https://doi.org/10.5281/zenodo.10866111 (ref. 55). Additional raw data are available from the corresponding author upon reasonable request.

References

  1. Wilson, N. P., Yao, W., Shan, J. & Xu, X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 599, 383–392 (2021).

    CAS  PubMed  Google Scholar 

  2. Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

  3. Shi, L.-k, Ma, J. & Song, J. C. W. Gate-tunable flat bands in van der Waals patterned dielectric superlattices. 2D Mater. 7, 015028 (2019).

    Google Scholar 

  4. Larentis, S. et al. Large effective mass and interaction-enhanced Zeeman splitting of K-valley electrons in MoSe2. Phys. Rev. B 97, 201407 (2018).

    CAS  Google Scholar 

  5. Shi, Q. et al. Odd- and even-denominator fractional quantum Hall states in monolayer WSe2. Nat. Nanotechnol. 15, 569–573 (2020).

    CAS  PubMed  Google Scholar 

  6. Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    CAS  PubMed  Google Scholar 

  7. Foutty, B. A. et al. Mapping twist-tuned multiband topology in bilayer WSe2. Science 384, 343–347 (2024).

    CAS  PubMed  Google Scholar 

  8. Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

  9. Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    CAS  PubMed  Google Scholar 

  10. Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    CAS  PubMed  Google Scholar 

  11. Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).

    CAS  Google Scholar 

  12. Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).

    CAS  PubMed  Google Scholar 

  13. Nguyen, P. X. et al. Perfect Coulomb drag in a dipolar excitonic insulator. Preprint at https://arxiv.org/abs/2309.14940 (2023).

  14. Qi, R. et al. Perfect Coulomb drag and exciton transport in an excitonic insulator. Preprint at https://arxiv.org/abs/2309.15357 (2023).

  15. Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    CAS  PubMed  Google Scholar 

  16. Wang, Y. & Chhowalla, M. Making clean electrical contacts on 2D transition metal dichalcogenides. Nat. Rev. Phys. 4, 101–112 (2022).

    CAS  Google Scholar 

  17. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    CAS  PubMed  Google Scholar 

  18. Movva, H. C. P. et al. High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano 9, 10402–10410 (2015).

    CAS  PubMed  Google Scholar 

  19. Jung, Y. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron. 2, 187–194 (2019).

    Google Scholar 

  20. Xu, S. et al. Universal low-temperature ohmic contacts for quantum transport in transition metal dichalcogenides. 2D Mater. 3, 021007 (2016).

    Google Scholar 

  21. Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    CAS  PubMed  Google Scholar 

  22. Borah, A., Nipane, A., Choi, M. S., Hone, J. & Teherani, J. T. Low-resistance p-type ohmic contacts to ultrathin WSe2 by using a monolayer dopant. ACS Appl. Electron. Mater. 3, 2941–2947 (2021).

    CAS  Google Scholar 

  23. Cai, X. et al. Bridging the gap between atomically thin semiconductors and metal leads. Nat. Commun. 13, 1777 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mashhadi, S. et al. Spin-split band hybridization in graphene proximitized with α-RuCl3 nanosheets. Nano Lett. 19, 4659–4665 (2019).

    CAS  PubMed  Google Scholar 

  25. Rizzo, D. J. et al. Charge-transfer plasmon polaritons at graphene/α-RuCl3 interfaces. Nano Lett. 20, 8438–8445 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, Y. et al. Modulation doping via a two-dimensional atomic crystalline acceptor. Nano Lett. 20, 8446–8452 (2020).

    CAS  PubMed  Google Scholar 

  27. Liu, S. et al. Two-step flux synthesis of ultrapure transition-metal dichalcogenides. ACS Nano 17, 16587–16596 (2023).

  28. Cho, Y. et al. Modulation doping of single-layer semiconductors for improved contact at metal interfaces. Nano Lett. 22, 9700–9706 (2022).

    CAS  PubMed  Google Scholar 

  29. Haratipour, N., Namgung, S., Oh, S.-H. & Koester, S. J. Fundamental limits on the subthreshold slope in Schottky source/drain black phosphorus field-effect transistors. ACS Nano 10, 3791–3800 (2016).

    CAS  PubMed  Google Scholar 

  30. Wang, J. et al. Transferred metal gate to 2D semiconductors for sub-1 V operation and near ideal subthreshold slope. Sci. Adv. 7, eabf8744 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, S. S. (ed.) Semiconductor Physical Electronics (Springer, 2006).

  32. Huang, Y., Shklovskii, B. I. & Zudov, M. A. Scattering mechanisms in state-of-the-art GaAs/AlGaAs quantum wells. Phys. Rev. Mater. 6, L061001 (2022).

    CAS  Google Scholar 

  33. Joe, A. Y. et al. Transport study of charge-carrier scattering in monolayer WSe2. Phys. Rev. Lett. 132, 056303 (2024).

    CAS  PubMed  Google Scholar 

  34. Ma, N. & Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 011043 (2014).

    CAS  Google Scholar 

  35. Shih, E.-M. et al. Spin-selective magneto-conductivity in WSe2. Preprint at https://arxiv.org/abs/2307.00446 (2023).

  36. Movva, H. C. P. Magnetotransport Studies of Tungsten Diselenide Holes. PhD thesis, The Univ. of Texas at Austin (2018).

  37. Kamburov, D., Baldwin, K. W., West, K. W., Shayegan, M. & Pfeiffer, L. N. Interplay between quantum well width and interface roughness for electron transport mobility in GaAs quantum wells. Appl. Phys. Lett. 109, 232105 (2016).

    Google Scholar 

  38. Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019).

    CAS  PubMed  Google Scholar 

  39. Fallahazad, B. et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).

    PubMed  Google Scholar 

  40. Chung, Y. J. et al. Ultra-high-quality two-dimensional electron systems. Nat. Mater. 20, 632–637 (2021).

    CAS  PubMed  Google Scholar 

  41. Chung, Y. J. et al. Record-quality GaAs two-dimensional hole systems. Phys. Rev. Mater. 6, 034005 (2022).

    CAS  Google Scholar 

  42. Falson, J. & Kawasaki, M. A review of the quantum Hall effects in MgZnO/ZnO heterostructures. Rep. Prog. Phys. 81, 056501 (2018).

    PubMed  Google Scholar 

  43. Kravchenko, S. V., Kravchenko, G. V., Furneaux, J. E., Pudalov, V. M. & D’Iorio, M. Possible metal-insulator transition at B=0 in two dimensions. Phys. Rev. B 50, 8039–8042 (1994).

    CAS  Google Scholar 

  44. Chung, Y. J. et al. Multivalley two-dimensional electron system in an AlAs quantum well with mobility exceeding 2 × 106 cm2 V−1 s−1. Phys. Rev. Mater. 2, 071001 (2018).

    CAS  Google Scholar 

  45. Falson, J. et al. Competing correlated states around the zero-field Wigner crystallization transition of electrons in two dimensions. Nat. Mater. 21, 311–316 (2022).

    CAS  PubMed  Google Scholar 

  46. Ahn, S. & Das Sarma, S. Density-tuned effective metal-insulator transitions in two-dimensional semiconductor layers: Anderson localization or Wigner crystallization. Phys. Rev. B 107, 195435 (2023).

    CAS  Google Scholar 

  47. Drummond, N. D. & Needs, R. J. Phase diagram of the low-density two-dimensional homogeneous electron gas. Phys. Rev. Lett. 102, 126402 (2009).

    CAS  PubMed  Google Scholar 

  48. Smoleński, T. et al. Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 595, 53–57 (2021).

    PubMed  Google Scholar 

  49. Andrei, E. Y. et al. Observation of a magnetically induced Wigner solid. Phys. Rev. Lett. 60, 2765–2768 (1988).

    CAS  PubMed  Google Scholar 

  50. Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).

    CAS  PubMed  Google Scholar 

  51. Polshyn, H. et al. Quantitative transport measurements of fractional quantum Hall energy gaps in edgeless graphene devices. Phys. Rev. Lett. 121, 226801 (2018).

    CAS  PubMed  Google Scholar 

  52. Schulze-Wischeler, F., Mariani, E., Hohls, F. & Haug, R. J. Direct measurement of the g factor of composite fermions. Phys. Rev. Lett. 92, 156401 (2004).

    CAS  PubMed  Google Scholar 

  53. Wang, Y. et al. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610, 61–66 (2022).

    PubMed  Google Scholar 

  54. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    CAS  PubMed  Google Scholar 

  55. Pack, J. Data related to ‘Charge-transfer contacts for the measurement of correlated states in monolayer WSe2’. Zenodo https://doi.org/10.5281/zenodo.10866111 (2024).

Download references

Acknowledgements

This research is primarily supported by the US Department of Energy (DE-SC0016703). The synthesis of WSe2 (L.H., S.L. and K.B.) was supported by the Columbia University Materials Science and Engineering Research Center (MRSEC) through NSF grants DMR-1420634 and DMR-2011738. J.H. and C.R.D. acknowledge support from the Gordon and Betty Moore Foundation’s EPiQS Initiative Grant GBMF10277. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation Cooperative Agreement no. DMR-2128556 and the State of Florida. D.G.M. and M.C. acknowledge support from the Gordon and Betty Moore Foundation’s EPiQS Initiative, Grant GBMF9069. K.W. and T.T. acknowledge support from JSPS KAKENHI (grant nos. 21H05233 and 23H02052) and World Premier International Research Center Initiative (WPI), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Contributions

J.P., Y.G., Z.L. and B.S.J. fabricated the devices. J.P. performed the electronic transport measurements and analysed the data. L.H. and S.L. grew the WSe2 crystals under the supervision of J.H. and K.B. M.C. grew the α-RuCl3 crystals under the supervision of D.G.M. K.W. and T.T. grew the hexagonal boron nitride crystals. J.P., C.R.D. and J.H. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Cory R. Dean.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Guangyu Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pack, J., Guo, Y., Liu, Z. et al. Charge-transfer contacts for the measurement of correlated states in high-mobility WSe2. Nat. Nanotechnol. 19, 948–954 (2024). https://doi.org/10.1038/s41565-024-01702-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-024-01702-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing