Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coherent electronic coupling in quantum dot solids induces cooperative enhancement of nonlinear optoelectronic responses


Synchronized dynamics of quantum dot (QD) ensembles are essential for generating ultrafast and giant optical responses beyond those of individual QDs. Increasing the strength of the direct electronic coupling between QDs is a key strategy for the realization of cooperative quantum phenomena. Here, we observe a quantum cooperative effect on nonlinear photocurrents caused by the coherent electronic coupling in semiconductor QD solids. We measure quantum interference signals cooperatively generated in QD solids. We control the inter-QD distance with atomic precision using bidentate ligands that strongly link the QDs. The harmonic quantum interference signals are strongly enhanced when shortening the molecular length of the ligand. Furthermore, we clarify that the coherence length of multiexcitons extends to neighbouring QDs. This finding is direct evidence that multiexciton coherent tunnelling assists the ultrafast exciton delocalization. Cooperative enhancement in QD solids may find application in advanced quantum optoelectronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sample and experimental setup.
Fig. 2: Quantum interference signals from QD films.
Fig. 3: Harmonic quantum interference signals for different ligand lengths.
Fig. 4: Sources of double-quantum coherent signals.
Fig. 5: Coupling strengths in quantum cooperative processes.
Fig. 6: Correlation of exciton resonance energy and coupling strength.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.


  1. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article  CAS  Google Scholar 

  2. Skribanowitz, N., Herman, I. P., MacGillivray, J. C. & Feld, M. S. Observation of Dicke superradiance in optically pumped HF gas. Phys. Rev. Lett. 30, 309–312 (1973).

    Article  Google Scholar 

  3. Gibbs, H. M., Vrehen, Q. H. F. & Hikspoors, H. M. J. Single-pulse superfluorescence in cesium. Phys. Rev. Lett. 39, 547–550 (1977).

    Article  CAS  Google Scholar 

  4. Frolov, S. V. et al. Cooperative emission in π-conjugated polymer thin films. Phys. Rev. Lett. 78, 729–732 (1997).

    Article  CAS  Google Scholar 

  5. Zhang, Q. et al. Superradiant decay of cyclotron resonance of two-dimensional electron gases. Phys. Rev. Lett. 113, 047601 (2014).

    Article  CAS  Google Scholar 

  6. Zhang, Q. et al. Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons. Nat. Phys. 12, 1005–1011 (2016).

    Article  CAS  Google Scholar 

  7. Li, X. et al. Observation of Dicke cooperativity in magnetic interactions. Science 361, 794–797 (2018).

    Article  CAS  Google Scholar 

  8. Scheibner, M. et al. Superradiance of quantum dots. Nat. Phys. 3, 106–110 (2007).

    Article  CAS  Google Scholar 

  9. Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).

    Article  Google Scholar 

  10. Cherniukh, I. et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature 593, 535–542 (2021).

    Article  CAS  Google Scholar 

  11. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335–1338 (1995).

    Article  CAS  Google Scholar 

  12. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    Article  CAS  Google Scholar 

  13. Beard, M. C. et al. Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Lett. 9, 836–845 (2009).

    Article  CAS  Google Scholar 

  14. Tang, J. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10, 765–771 (2011).

    Article  CAS  Google Scholar 

  15. Ono, M. et al. Impact of surface ligands on the photocurrent enhancement due to multiple exciton generation in close-packed nanocrystal thin films. Chem. Sci. 5, 2696–2701 (2014).

    Article  CAS  Google Scholar 

  16. Kagan, C. R. & Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 10, 1013–1026 (2015).

    Article  CAS  Google Scholar 

  17. Proppe, A. H. et al. Picosecond charge transfer and long carrier diffusion lengths in colloidal quantum dot solids. Nano Lett. 18, 7052–7059 (2018).

    Article  CAS  Google Scholar 

  18. Karki, K. J. et al. Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell. Nat. Commun. 5, 5869 (2014).

    Article  CAS  Google Scholar 

  19. Tahara, H., Sakamoto, M., Teranishi, T. & Kanemitsu, Y. Harmonic quantum coherence of multiple excitons in PbS/CdS core-shell nanocrystals. Phys. Rev. Lett. 119, 247401 (2017).

    Article  Google Scholar 

  20. Tahara, H., Sakamoto, M., Teranishi, T. & Kanemitsu, Y. Quantum coherence of multiple excitons governs absorption cross-sections of PbS/CdS core/shell nanocrystals. Nat. Commun. 9, 3179 (2018).

    Article  Google Scholar 

  21. Schaller, R. D. & Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004).

    Article  CAS  Google Scholar 

  22. Ellingson, R. J. et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005).

    Article  CAS  Google Scholar 

  23. Shabaev, A., Efros, Al. L. & Nozik, A. J. Multiexciton generation by a single photon in nanocrystals. Nano Lett. 6, 2856–2863 (2006).

    Article  CAS  Google Scholar 

  24. Semonin, O. E. et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).

    Article  CAS  Google Scholar 

  25. Shabaev, A., Hellberg, C. S. & Efros, A. L. Efficiency of multiexciton generation in colloidal nanostructures. Acc. Chem. Res. 46, 1242–1251 (2013).

    Article  CAS  Google Scholar 

  26. Tahara, H., Sakamoto, M., Teranishi, T. & Kanemitsu, Y. Collective enhancement of quantum coherence in coupled quantum dot films. Phys. Rev. B 104, L241405 (2021).

    Article  CAS  Google Scholar 

  27. Hines, M. A. & Scholes, G. D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15, 1844–1849 (2003).

    Article  CAS  Google Scholar 

  28. Pattantyus-Abraham, A. G. et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4, 3374–3380 (2010).

    Article  CAS  Google Scholar 

  29. Kang, I. & Wise, F. W. Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. B 14, 1632–1646 (1997).

    Article  CAS  Google Scholar 

  30. Tahara, H. & Kanemitsu, Y. Quantum interference measurements and their application to analysis of ultrafast photocarrier dynamics in semiconductor solar cell materials. Adv. Quantum Technol. 3, 1900098 (2020).

    Article  CAS  Google Scholar 

  31. Klimov, V. I., McGuire, J. A., Schaller, R. D. & Rupasov, V. I. Scaling of multiexciton lifetimes in semiconductor nanocrystals. Phys. Rev. B 77, 195324 (2008).

    Article  Google Scholar 

  32. Zhang, Z. et al. Ultrafast exciton transport at early times in quantum dot solids. Nat. Mater. 21, 533–539 (2022).

    Article  CAS  Google Scholar 

Download references


Part of this work was supported by JSPS KAKENHI grant nos. JP19H05465 (Y.K. and H.T.), JP22H01990 (H.T.) and JP23K17877 (H.T.), JST-CREST grant no. JPMJCR21B4 (T.T. and Y.K.) and JST-FOREST grant no. JPMJFR201M (M.S.).

Author information

Authors and Affiliations



H.T. conceived and designed the research. H.T. performed the experiments and analysed the data. M.S. and T.T. synthesized the QDs and fabricated the QD films. Y.K. supervised the project. All authors discussed the results and contributed to the writing of the paper.

Corresponding authors

Correspondence to Hirokazu Tahara or Yoshihiko Kanemitsu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Optical and electrical properties of QD films.

a, Absorption spectra of C2 (blue), C3 (green), C4 (red), and C5 (black) films. Their normalized spectra are shown in the main text (see Fig. 1c). b, Current-voltage characteristic of a representative C2 film under air mass 1.5 illumination.

Extended Data Fig. 2 Photocurrent quantum interference signals.

Photocurrent quantum interference signals of a C2 film are shown by black solid curves for different excitation photon fluences. The average numbers of absorbed photons per QD are (a) 0.5, (b) 1.1, and (c) 1.7. The photocurrent interference curves show stronger deformations with increasing excitation photon fluence. Excitation pulse interference signals (red dashed curves) were measured simultaneously.

Extended Data Fig. 3 Coupling strengths.

Coupling strengths of (a) \(2\omega\), (b) \(3\omega\), and (c) \(4\omega\) oscillations are plotted as a function of the square root of QD density. The coupling strengths are proportional to the square root of QD density. The QD density is evaluated from the average QD diameter and the lengths of ligand molecules in close packing. Error bars are the standard deviations of the fitting parameters. Dashed curves are guides for the eye.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahara, H., Sakamoto, M., Teranishi, T. et al. Coherent electronic coupling in quantum dot solids induces cooperative enhancement of nonlinear optoelectronic responses. Nat. Nanotechnol. (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing