Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multidimensional detection enabled by twisted black arsenic–phosphorus homojunctions

Abstract

A light field carrying multidimensional optical information, including but not limited to polarization, intensity and wavelength, is essential for numerous applications such as environmental monitoring, thermal imaging, medical diagnosis and free-space communications. Simultaneous acquisition of this multidimensional information could provide comprehensive insights for understanding complex environments but remains a challenge. Here we demonstrate a multidimensional optical information detection device based on zero-bias double twisted black arsenic–phosphorus homojunctions, where the photoresponse is dominated by the photothermoelectric effect. By using a bipolar and phase-offset polarization photoresponse, the device operated in the mid-infrared range can simultaneously detect both the polarization angle and incident intensity information through direct measurement of the photocurrents in the double twisted black arsenic–phosphorus homojunctions. The device’s responsivity makes it possible to retrieve wavelength information, typically perceived as difficult to obtain. Moreover, the device exhibits an electrically tunable polarization photoresponse, enabling precise distinction of polarization angles under low-intensity light exposure. These demonstrations offer a promising approach for simultaneous detection of multidimensional optical information, indicating potential for diverse photonic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device configuration and working principle of the MIR polarization photodetectors based on double twisted b-AsP homojunctions.
Fig. 2: Simultaneous detection of polarization angle and incident intensity with the double twisted b-AsP homojunctions.
Fig. 3: Wavelength-dependent polarization detection of the double twisted b-AsP homojunctions.
Fig. 4: Electrically tunable polarization detection of the double twisted b-AsP homojunctions.
Fig. 5: Demonstration of multidimensional optical information imaging.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the main text and Supplementary Information. Any other relevant data are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. He, C. et al. Polarisation optics for biomedical and clinical applications: a review. Light Sci. Appl. 10, 194 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hakkel, K. D. et al. Integrated near-infrared spectral sensing. Nat. Commun. 13, 103 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ren, Z., Zhang, Z., Wei, J., Dong, B. & Lee, C. Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy. Nat. Commun. 13, 3859 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zou, K. et al. High-capacity free-space optical communications using wavelength- and mode-division-multiplexing in the mid-infrared region. Nat. Commun. 13, 7662 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ou, K. et al. Mid-infrared polarization-controlled broadband achromatic metadevice. Sci. Adv. 6, eabc0711 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tang, X., Ackerman, M. M., Chen, M. & Guyot-Sionnest, P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photon. 13, 277–282 (2019).

    Article  CAS  Google Scholar 

  8. Yuan, S., Naveh, D., Watanabe, K., Taniguchi, T. & Xia, F. A wavelength-scale black phosphorus spectrometer. Nat. Photon. 15, 601–607 (2021).

    Article  CAS  Google Scholar 

  9. Yoon, H. H. et al. Miniaturized spectrometers with a tunable van der Waals junction. Science 378, 296–299 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Deng, W. et al. Electrically tunable two-dimensional heterojunctions for miniaturized near-infrared spectrometers. Nat. Commun. 13, 4627 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shen, D. et al. High-performance mid-IR to deep-UV van der Waals photodetectors capable of local spectroscopy at room temperature. Nano Lett. 22, 3425–3432 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, Y. et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat. Electron. 4, 357–363 (2021).

    Article  CAS  Google Scholar 

  13. Liu, W. et al. Graphene charge-injection photodetectors. Nat. Electron. 5, 281–288 (2022).

    Article  CAS  Google Scholar 

  14. Chen, Y. et al. Momentum-matching and band-alignment van der Waals heterostructures for high-efficiency infrared photodetection. Sci. Adv. 8, eabq1781 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Adinolfi, V. & Sargent, E. H. Photovoltage field-effect transistors. Nature 542, 324–327 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, B. Y. et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811 (2013).

    Article  PubMed  Google Scholar 

  17. Yuan, H. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10, 707–713 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Wu, S. et al. Ultra-sensitive polarization-resolved black phosphorus homojunction photodetector defined by ferroelectric domains. Nat. Commun. 13, 3198 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dai, M. et al. High-performance, polarization-sensitive, long-wave infrared photodetection via photothermoelectric effect with asymmetric van der Waals contacts. ACS Nano 16, 295–305 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Semkin, V. A. et al. Zero-bias photodetection in 2D materials via geometric design of contacts. Nano Lett. 23, 5250–5256 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Ma, C. et al. Intelligent infrared sensing enabled by tunable moire quantum geometry. Nature 604, 266–272 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Xiong, Y. et al. Twisted black phosphorus-based van der Waals stacks for fiber-integrated polarimeters. Sci. Adv. 8, eabo0375 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deng, W. et al. Switchable unipolar-barrier van der Waals heterostructures with natural anisotropy for full linear polarimetry detection. Adv. Mater. 34, 2203766 (2022).

    Article  CAS  Google Scholar 

  24. Dai, M. et al. On-chip mid-infrared photothermoelectric detectors for full-Stokes detection. Nat. Commun. 13, 4560 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wei, J. et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nat. Commun. 11, 6404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wei, J. et al. Geometric filterless photodetectors for mid-infrared spin light. Nat. Photon. 17, 171–178 (2022).

    Google Scholar 

  27. Dai, M. et al. Long-wave infrared photothermoelectric detectors with ultrahigh polarization sensitivity. Nat. Commun. 14, 3421 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, M. et al. High yield growth and doping of black phosphorus with tunable electronic properties. Mater. Today 36, 91–101 (2020).

    Article  CAS  Google Scholar 

  29. Amani, M., Regan, E., Bullock, J., Ahn, G. H. & Javey, A. Mid-wave infrared photoconductors based on black phosphorus–arsenic alloys. ACS Nano 11, 11724–11731 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Yuan, S. et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures. Nano Lett. 18, 3172–3179 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Long, M. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 3, e1700589 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Karki, B., Rajapakse, M., Sumanasekera, G. U. & Jasinski, J. B. Structural and thermoelectric properties of black arsenic–phosphorus. ACS Appl. Energy Mater. 3, 8543–8551 (2020).

    Article  CAS  Google Scholar 

  33. Wang, F. et al. A two-dimensional mid-infrared optoelectronic retina enabling simultaneous perception and encoding. Nat. Commun. 14, 1938 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, X., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, F., Pei, K., Li, Y., Li, H. & Zhai, T. 2D homojunctions for electronics and optoelectronics. Adv. Mater. 33, 2005303 (2021).

    Article  CAS  Google Scholar 

  36. Xu, B., Mao, N., Zhao, Y., Tong, L. & Zhang, J. Polarized Raman spectroscopy for determining crystallographic orientation of low-dimensional materials. J. Phys. Chem. Lett. 12, 7442–7452 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Zou, B. et al. Unambiguous determination of crystal orientation in black phosphorus by angle-resolved polarized Raman spectroscopy. Nanoscale Horiz. 6, 809–818 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, B. et al. Black arsenic–phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 27, 4423–4429 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Wei, J. X., Xu, C., Dong, B. W., Qiu, C. W. & Lee, C. K. Mid-infrared semimetal polarization detectors with configurable polarity transition.Nat. Photon. 15, 614–621 (2021).

    Article  CAS  Google Scholar 

  40. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Singapore Ministry of Education (MOE-T2EP50120-0009 (Q.J.W.)), the Agency for Science, Technology and Research (A*STAR) (A18A7b0058 (Q.J.W.), M22K2c0080 (Q.J.W.) and A2090b0144 (Q.J.W.)), the National Medical Research Council (NMRC) (award number MOH-000927 (Q.J.W.)) and the National Research Foundation Singapore (award number NRF-CRP22-2019-0007 (Q.J.W.)).

Author information

Authors and Affiliations

Authors

Contributions

Q.J.W. supervised the project. F.W. designed and fabricated the devices. F.W., S.Z., W.C. and J.H. performed the device characterizations. S.Z., W.C., R.D., C.W., M.D., F.S. and Y.J. provided experimental testing support. F.W. analysed the data and drafted the manuscript. Q.J.W. revised the manuscript. All authors have discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Qi Jie Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Notes 1–4 and Table 1.

Source data

Source Data Fig. 2

Source data for the plot in Fig. 2.

Source Data Fig. 3

Source data for the plot in Fig. 3.

Source Data Fig. 4

Source data for the plot in Fig. 4.

Source Data Fig. 5

Source data for the plot in Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Zhu, S., Chen, W. et al. Multidimensional detection enabled by twisted black arsenic–phosphorus homojunctions. Nat. Nanotechnol. 19, 455–462 (2024). https://doi.org/10.1038/s41565-023-01593-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01593-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing