Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic configurations of metallic atoms in the liquid state for selective propylene synthesis

Abstract

The use of liquid gallium as a solvent for catalytic reactions has enabled access to well-dispersed metal atoms configurations, leading to unique catalytic phenomena, including activation of neighbouring liquid atoms and mobility-induced activity enhancement. To gain mechanistic insights into liquid metal catalysts, here we introduce a GaSn0.029Ni0.023 liquid alloy for selective propylene synthesis from decane. Owing to their mobility, dispersed atoms in a Ga matrix generate configurations where interfacial Sn and Ni atoms allow for critical alignments of reactants and intermediates. Computational modelling, corroborated by experimental analyses, suggests a particular reaction mechanism by which Sn protrudes from the interface and an adjacent Ni, below the interfacial layer, aligns precisely with a decane molecule, facilitating propylene production. We then apply this reaction pathway to canola oil, attaining a propylene selectivity of ~94.5%. Our results offer a mechanistic interpretation of liquid metal catalysts with an eye to potential practical applications of this technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics and computational simulations describing the GaSn0.029Ni0.023 catalyst.
Fig. 2: Experimental and computational results of propylene synthesis from decane conversion.
Fig. 3: Schematics and experimental results of propylene synthesis from canola oil conversion.

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Chen, S. et al. Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts. Chem 7, 387–405 (2021).

    Article  CAS  Google Scholar 

  3. Smit, B. & Maesen, T. L. M. Towards a molecular understanding of shape selectivity. Nature 451, 671–678 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Cai, W. et al. Subsurface catalysis-mediated selectivity of dehydrogenation reaction. Sci. Adv. 4, eaar5418 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13, 411–417 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Greiner, M. T. et al. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 10, 1008–1015 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Cui, T.-L. et al. Encapsulating palladium nanoparticles inside mesoporous MFI zeolite nanocrystals for shape-selective catalysis. Angew. Chem. Int. Ed. 55, 9178–9182 (2016).

    Article  CAS  Google Scholar 

  8. Wang, C. et al. Fischer–Tropsch synthesis to olefins boosted by MFI zeolite nanosheets. Nat. Nanotechnol. 17, 714–720 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Liu, D., He, Q., Ding, S. & Song, L. Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. Adv. Energy Mater. 10, 2001482 (2020).

    Article  CAS  Google Scholar 

  10. Ma, T. et al. Toward phase and catalysis control: tracking the formation of intermetallic nanoparticles at atomic scale. Chem 5, 1235–1247 (2019).

    Article  CAS  Google Scholar 

  11. Guo, W., Wang, Z., Wang, X. & Wu, Y. General design concept for single-atom catalysts toward heterogeneous catalysis. Adv. Mater. 33, 2004287 (2021).

    Article  CAS  Google Scholar 

  12. Somorjai, G. A. & Park, J. Y. Molecular factors of catalytic selectivity. Angew. Chem. Int. Ed. 47, 9212–9228 (2008).

    Article  CAS  Google Scholar 

  13. Rahim, M. A. et al. Low-temperature liquid platinum catalyst. Nat. Chem. 14, 935–941 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Zuraiqi, K. et al. Liquid metals in catalysis for energy applications. Joule 4, 2290–2321 (2020).

    Article  CAS  Google Scholar 

  15. Yan, H. et al. Tandem In2O3-Pt/Al2O3 catalyst for coupling of propane dehydrogenation to selective H2 combustion. Science 371, 1257–1260 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Motagamwala, A. H., Almallahi, R., Wortman, J., Igenegbai, V. O. & Linic, S. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. Science 373, 217–222 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Tang, J. et al. Low temperature mechano-catalytic biofuel conversion using liquid metals. Chem. Eng. J. 452, 139350 (2023).

    Article  CAS  Google Scholar 

  18. Liu, H. et al. Solid–liquid phase transition induced electrocatalytic switching from hydrogen evolution to highly selective CO2 reduction. Nat. Catal. 4, 202–211 (2021).

    Article  CAS  Google Scholar 

  19. Studt, F. et al. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 6, 320–324 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Ma, Z. et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20, 859–868 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Esrafilzadeh, D. et al. Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nat. Commun. 10, 865 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Tang, J. et al. Low temperature nano mechano-electrocatalytic CH4 conversion. ACS Nano 16, 8684–8693 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Article  ADS  Google Scholar 

  24. Tang, J. et al. Unique surface patterns emerging during solidification of liquid metal alloys. Nat. Nanotechnol. 16, 431–439 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Vanommeslaeghe, K. & MacKerell, A. D. Jr. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J. Chem. Inf. Model. 52, 3144–3154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vanommeslaeghe, K., Raman, E. P. & MacKerell, A. D. Jr. Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J. Chem. Inf. Model. 52, 3155–3168 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  PubMed  Google Scholar 

  28. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  CAS  Google Scholar 

  29. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  31. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Giorgino, T. Computing diffusion coefficients in macromolecular simulations: the Diffusion Coefficient Tool for VMD. J. Open Source Softw. 4, 1698 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Thomas of the Spectroscopy Laboratory and the Nuclear Magnetic Resonance Facility at the University of New South Wales, Sydney for his technical assistance. We also thank M. B. Ghasemian at the University of New South Wales, Sydney for his technical assistance. This work was supported by the Australian Research Council (ARC) Laureate Fellowship grant (FL180100053).

Author information

Authors and Affiliations

Authors

Contributions

Junma Tang initiated the concept and designed the experiments along with K.K.-Z. Junma Tang also conducted the experiments and carried out the characterizations, with the help of M.A.R. and K.K.-Z. The molecular dynamics simulations were performed by A.J.C., N.M. and S.P.R.; M.T. helped with the mass spectrometry experiments and analysis. P.V.K. and J.A.Y. performed the Bader charge analyses. The following individuals contributed to the data analyses, scientific discussions and authorship of the paper: A.J.C., J.S., M.T., N.M., Q.Z., Jianbo Tang, L.D., G.M., S.P.R., R.B.K., M.A.R. and K.K.-Z. All authors revised the manuscript and provided helpful comments.

Corresponding authors

Correspondence to Junma Tang, Md. Arifur Rahim or Kourosh Kalantar-Zadeh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Shinya Furukawa, Yian Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussions 1–10, Figs. 1–22 and Tables 1–6.

Supplementary Video 1

The video shows the gaseous bubbles produced from the scaled-up experiment, using GaSn0.029Ni0.023 as the catalyst and canola oil as the feedstock.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Christofferson, A.J., Sun, J. et al. Dynamic configurations of metallic atoms in the liquid state for selective propylene synthesis. Nat. Nanotechnol. 19, 306–310 (2024). https://doi.org/10.1038/s41565-023-01540-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01540-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing