Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A modular approach to enhancing cell membrane-coated nanoparticle functionality using genetic engineering

Abstract

Since their initial development, cell membrane-coated nanoparticles (CNPs) have become increasingly popular in the biomedical field. Despite their inherent versatility and ability to enable complex biological applications, there is considerable interest in augmenting the performance of CNPs through the introduction of additional functionalities. Here we demonstrate a genetic-engineering-based modular approach to CNP functionalization that can encompass a wide range of ligands onto the nanoparticle surface. The cell membrane coating is engineered to express a SpyCatcher membrane anchor that can readily form a covalent bond with any moiety modified with SpyTag. To demonstrate the broad utility of this technique, three unique targeted CNP formulations are generated using different classes of targeting ligands, including a designed ankyrin repeat protein, an affibody and a single-chain variable fragment. In vitro, the modified nanoparticles exhibit enhanced affinity towards cell lines overexpressing the cognate receptors for each ligand. When formulated with a chemotherapeutic payload, the modularly functionalized nanoparticles display strong targeting ability and growth suppression in a murine tumour xenograft model of ovarian cancer. Our data suggest genetic engineering offers a feasible approach for accelerating the development of multifunctional CNPs for a broad range of biomedical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Engineering and characterization of SpyCatcher-expressing cells and SpyTag-labelled ligands.
Fig. 2: Functional characterization of SpyTag-labelled ligands.
Fig. 3: Nanoparticle synthesis and functionalization.
Fig. 4: Functional characterization of modularly functionalized nanoparticles.
Fig. 5: In vivo tumour targeting, therapeutic efficacy and safety.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within this article and its Supplementary Information. Source data are provided with this paper.

References

  1. Fang, R. H., Kroll, A. V., Gao, W. & Zhang, L. Cell membrane coating nanotechnology. Adv. Mater. 30, 1706759 (2018).

    Article  Google Scholar 

  2. Fang, R. H., Gao, W. & Zhang, L. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat. Rev. Clin. Oncol. 20, 33–48 (2023).

    Article  PubMed  Google Scholar 

  3. Narain, A., Asawa, S., Chhabria, V. & Patil-Sen, Y. Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine 12, 2677–2692 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Hu, C. M. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA 108, 10980–10985 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fang, R. H. et al. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale 5, 8884–8888 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Liu, G. et al. Engineering biomimetic platesomes for pH-responsive drug delivery and enhanced antitumor activity. Adv. Mater. 31, 1900795 (2019).

    Article  Google Scholar 

  7. Hu, Q. et al. Anticancer platelet-mimicking nanovehicles. Adv. Mater. 27, 7043–7050 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, H. et al. Lipid insertion enables targeted functionalization of paclitaxel-loaded erythrocyte membrane nanosystem by tumor-penetrating bispecific recombinant protein. Int. J. Nanomed. 13, 5347–5359 (2018).

    Article  CAS  Google Scholar 

  9. Li, P. Y., Fan, Z. & Cheng, H. Cell membrane bioconjugation and membrane-derived nanomaterials for immunotherapy. Bioconjug. Chem. 29, 624–634 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fu, Q. et al. Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane. Nanoscale 7, 4020–4030 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Zhu, D. M. et al. Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. Nanotechnology 29, 084002 (2018).

    Article  ADS  PubMed  Google Scholar 

  12. Zhang, Q. et al. Biomimetic magnetosomes as versatile artificial antigen-presenting cells to potentiate T-cell-based anticancer therapy. ACS Nano 11, 10724–10732 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Han, Y. et al. T cell membrane mimicking nanoparticles with bioorthogonal targeting and immune recognition for enhanced photothermal therapy. Adv. Sci. 6, 1900251 (2019).

    Article  Google Scholar 

  14. Ma, W. et al. Coating biomimetic nanoparticles with chimeric antigen receptor T cell-membrane provides high specificity for hepatocellular carcinoma photothermal therapy treatment. Theranostics 10, 1281–1295 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rao, L. et al. Activating macrophage-mediated cancer immunotherapy by genetically edited nanoparticles. Adv. Mater. 32, 2004853 (2020).

    Article  CAS  Google Scholar 

  16. Zhang, X. et al. PD-1 blockade cellular vesicles for cancer immunotherapy. Adv. Mater. 30, 1707112 (2018).

    Article  Google Scholar 

  17. Jiang, Y. et al. Engineered cell-membrane-coated nanoparticles directly present tumor antigens to promote anticancer immunity. Adv. Mater. 32, 2001808 (2020).

    Article  CAS  Google Scholar 

  18. Bose, R. J. et al. Bioengineered stem cell membrane functionalized nanocarriers for therapeutic targeting of severe hindlimb ischemia. Biomaterials 185, 360–370 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Park, J. H. et al. Virus-mimicking cell membrane-coated nanoparticles for cytosolic delivery of mRNA. Angew. Chem. Int. Ed. 61, e202113671 (2022).

    Article  ADS  CAS  Google Scholar 

  20. Saeui, C. T., Mathew, M. P., Liu, L., Urias, E. & Yarema, K. J. Cell surface and membrane engineering: emerging technologies and applications. J. Funct. Biomater. 6, 454–485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu, K., Liu, C., Kim, B. G. & Lee, D. Y. Synthetic fusion protein design and applications. Biotechnol. Adv. 33, 155–164 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Cho, J. H., Collins, J. J. & Wong, W. W. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 173, 1426–1438.e11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van der Meer, S. B. et al. Avidin-conjugated calcium phosphate nanoparticles as a modular targeting system for the attachment of biotinylated molecules in vitro and in vivo. Acta Biomater. 57, 414–425 (2017).

    Article  PubMed  Google Scholar 

  24. Peuler, K., Dimmitt, N. & Lin, C. C. Clickable modular polysaccharide nanoparticles for selective cell-targeting. Carbohydr. Polym. 234, 115901 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vragniau, C. et al. Synthetic self-assembling ADDomer platform for highly efficient vaccination by genetically encoded multiepitope display. Sci. Adv. 5, eaaw2853 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brouwer, P. J. M. et al. Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection. Cell 184, 1188–1200.e19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, X. et al. Orthogonal modular biosynthesis of nanoscale conjugate vaccines for vaccination against infection. Nano Res. 15, 1645–1653 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Bruun, T. U. J., Andersson, A. C., Draper, S. J. & Howarth, M. Engineering a rugged nanoscaffold to enhance plug-and-display vaccination. ACS Nano 12, 8855–8866 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Singh, S. K. et al. Improving the malaria transmission-blocking activity of a Plasmodium falciparum 48/45 based vaccine antigen by SpyTag/SpyCatcher mediated virus-like display. Vaccine 35, 3726–3732 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, W. et al. Ferritin nanoparticle-based SpyTag/SpyCatcher-enabled click vaccine for tumor immunotherapy. Nanomedicine 16, 69–78 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Keeble, A. H. et al. Approaching infinite affinity through engineering of peptide–protein interaction. Proc. Natl Acad. Sci. USA 116, 26523–26533 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pruszynski, M., D’Huyvetter, M., Bruchertseifer, F., Morgenstern, A. & Lahoutte, T. Evaluation of an anti-HER2 nanobody labeled with 225Ac for targeted α-particle therapy of cancer. Mol. Pharm. 15, 1457–1466 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Subik, K. et al. The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer Basic Clin. Res. 4, 35–41 (2010).

    Article  Google Scholar 

  34. Wang, K., Li, D. & Sun, L. High levels of EGFR expression in tumor stroma are associated with aggressive clinical features in epithelial ovarian cancer. OncoTargets Ther. 9, 377–386 (2016).

  35. Luk, B. T. et al. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale 6, 2730–2737 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu, C. M. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu, C. M. et al. ‘Marker-of-self’ functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale 5, 2664–2668 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Park, J. H. et al. Genetically engineered cell membrane-coated nanoparticles for targeted delivery of dexamethasone to inflamed lungs. Sci. Adv. 7, eabf7820 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Veggiani, G. et al. Programmable polyproteams built using twin peptide superglues. Proc. Natl Acad. Sci. USA 113, 1202–1207 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chabloz, A. et al. Salmonella-based platform for efficient delivery of functional binding proteins to the cytosol. Commun. Biol. 3, 342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, Y. et al. Fluorogen activating protein-affibody probes: modular, no-wash measurement of epidermal growth factor receptors. Bioconjug. Chem. 26, 137–144 (2015).

    Article  PubMed  Google Scholar 

  42. Kroll, A. V. et al. Nanoparticulate delivery of cancer cell membrane elicits multiantigenic antitumor immunity. Adv. Mater. 29, 1703969 (2017).

Download references

Acknowledgements

This work is supported by the Defense Threat Reduction Agency Joint Science and Technology Office for Chemical and Biological Defense under grant number HDTRA1‐21‐1‐0010, the National Institutes of Health under award numbers R01CA200574, R21AI175904 and R21AI159492, and the National Science Foundation Grant DMR-1904702.

Author information

Authors and Affiliations

Authors

Contributions

N.K., Y.J., R.H.F. and L.Z. conceived and designed the experiments. N.K. conducted all experiments. Y.J., Y.D. and S.C. helped with plasmid construction and cell engineering. Y.J. and F.-X.P. assisted with protein production, cell culture and in vitro assays. J.Z. helped with all in vivo studies. A.M. supported the biodistribution and safety studies. M.H. and Z.G. assisted with tumour efficacy studies. N.K., Y.J., J.Z., A.M., F.-X.P., Y.D., M.H., S.C., Z.G., W.G., R.H.F. and L.Z. analysed and discussed the data. N.K., R.H.F. and L.Z. interpreted the data and wrote the paper.

Corresponding authors

Correspondence to Ronnie H. Fang or Liangfang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Mónica Fanarraga, Vesa-Pekka Lehto and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31.

Reporting Summary

Supplementary Data

Statistical source data for all supplementary figures.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, N., Jiang, Y., Zhou, J. et al. A modular approach to enhancing cell membrane-coated nanoparticle functionality using genetic engineering. Nat. Nanotechnol. 19, 345–353 (2024). https://doi.org/10.1038/s41565-023-01533-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01533-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research