Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A wearable aptamer nanobiosensor for non-invasive female hormone monitoring


Personalized monitoring of female hormones (for example, oestradiol) is of great interest in fertility and women’s health. However, existing approaches usually require invasive blood draws and/or bulky analytical laboratory equipment, making them hard to implement at home. Here we report a skin-interfaced wearable aptamer nanobiosensor based on target-induced strand displacement for automatic and non-invasive monitoring of oestradiol via in situ sweat analysis. The reagentless, amplification-free and ‘signal-on’ detection approach coupled with a gold nanoparticle-MXene-based detection electrode offers extraordinary sensitivity with an ultra-low limit of detection of 0.14 pM. This fully integrated system is capable of autonomous sweat induction at rest via iontophoresis, precise microfluidic sweat sampling controlled via capillary bursting valves, real-time oestradiol analysis and calibration with simultaneously collected multivariate information (that is, temperature, pH and ionic strength), as well as signal processing and wireless communication with a user interface (for example, smartphone). We validated the technology in human participants. Our data indicate a cyclical fluctuation in sweat oestradiol during menstrual cycles, and a high correlation between sweat and blood oestradiol was identified. Our study opens up the potential for wearable sensors for non-invasive, personalized reproductive hormone monitoring.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A wearable nanobiosensor based on strand-displacement aptamer switch for non-invasive reagentless female reproductive hormone analysis.
Fig. 2: Design and characterization of the reagentless amplification-free aptamer oestradiol sensor.
Fig. 3: Microfluidic wearable system integration for automatic in situ hormone analysis.
Fig. 4: Evaluation of the wearable sensor for non-invasive female hormone monitoring in human participants.

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. Source data for Figs. 24 are provided with this paper.


  1. Shansky, R. M. Are hormones a ‘female problem’ for animal research? Science 364, 825–826 (2019).

    Article  CAS  Google Scholar 

  2. Albert, P. R. Why is depression more prevalent in women? J. Psychiatry Neurosci. 40, 219–221 (2015).

    Article  Google Scholar 

  3. Nett, T. M., Turzillo, A. M., Baratta, M. & Rispoli, L. A. Pituitary effects of steroid hormones on secretion of follicle-stimulating hormone and luteinizing hormone. Domest. Anim. Endocrinol. 23, 33–42 (2002).

    Article  CAS  Google Scholar 

  4. Luine, V. N. Estradiol and cognitive function: past, present and future. Horm. Behav. 66, 602–618 (2014).

    Article  CAS  Google Scholar 

  5. van den Beld, A. W., de Jong, F. H., Grobbee, D. E., Pols, H. A. P. & Lamberts, S. W. J. Measures of bioavailable derum testosterone and estradiol and their relationships with muscle strength, bone density, and body composition in elderly men. J. Clin. Endocr. 85, 3276–3282 (2000).

    Google Scholar 

  6. Knowlton, A. A. & Lee, A. R. Estrogen and the cardiovascular system. Pharmacol. Ther. 135, 54–70 (2012).

    Article  CAS  Google Scholar 

  7. Khosla, S., Oursler, M. J. & Monroe, D. G. Estrogen and the skeleton. Trends Endocrinol. Metab. 23, 576–581 (2012).

    Article  CAS  Google Scholar 

  8. Rosner, W., Hankinson, S. E., Sluss, P. M., Vesper, H. W. & Wierman, M. E. Challenges to the measurement of estradiol: an endocrine society position statement. J. Clin. Endocrinol. Metab. 98, 1376–1387 (2013).

    Article  CAS  Google Scholar 

  9. Karashima, S. & Osaka, I. Rapidity and precision of steroid hormone measurement. J. Clin. Med. 11, 956 (2022).

    Article  CAS  Google Scholar 

  10. Macsali, F. et al. Menstrual cycle and respiratory symptoms in a general Nordic–Baltic population. Am. J. Respir. Crit. Care Med. 187, 366–373 (2013).

    Article  CAS  Google Scholar 

  11. Rizk, B. & Smitz, J. Ovarian hyperstimulation syndrome after superovulation using GnRH agonists for IVF and related procedures. Hum. Reprod. 7, 320–327 (1992).

    Article  CAS  Google Scholar 

  12. Klaiber, E. L., Broverman, D. M., Vogel, W., Peterson, L. G. & Snyder, M. B. Relationships of serum estradiol levels, menopausal duration, and mood during hormonal replacement therapy. Psychoneuroendocrinology 22, 549–558 (1997).

    Article  CAS  Google Scholar 

  13. Geraci, A. et al. Sarcopenia and menopause: the role of estradiol. Front. Endocrinol. 12, 682012 (2021).

    Article  Google Scholar 

  14. Dey, S. et al. Cyclic regulation of sensory perception by a female hormone alters behavior. Cell 161, 1334–1344 (2015).

    Article  CAS  Google Scholar 

  15. Thienpont, L. M., Verhaeghe, P. G., Van Brussel, K. A. & De Leenheer, A. P. Estradiol-17 beta quantified in serum by isotope dilution-gas chromatography-mass spectrometry: reversed-phase C18 high-performance liquid chromatography compared with immuno-affinity chromatography for sample pretreatment. Clin. Chem. 34, 2066–2069 (1988).

    Article  CAS  Google Scholar 

  16. Stanczyk, F. Z., Jurow, J. & Hsing, A. W. Limitations of direct immunoassays for measuring circulating estradiol levels in postmenopausal women and men in epidemiologic studies. Cancer Epidemiol. Biomark. Prev. 19, 903–906 (2010).

    Article  CAS  Google Scholar 

  17. Lee, J. S. et al. Comparison of methods to measure low serum estradiol levels in postmenopausal women. J. Clin. Endocrinol. Metab. 91, 3791–3797 (2006).

    Article  CAS  Google Scholar 

  18. Ettinger, B. et al. Associations between low levels of serum estradiol, bone density, and fractures among elderly women: the study of osteoporotic fractures. J. Clin. Endocrinol. Metab. 83, 2239–2243 (1998).

    CAS  Google Scholar 

  19. Ankarberg-Lindgren, C. & Norjavaara, E. A purification step prior to commercial sensitive immunoassay is necessary to achieve clinical usefulness when quantifying serum 17beta-estradiol in prepubertal children. Eur. J. Endocrinol. 158, 117–124 (2008).

    Article  CAS  Google Scholar 

  20. Seippel, L. & Bäckström, T. Luteal-phase estradiol relates to symptom severity in patients with premenstrual syndrome. J. Clin. Endocr. Metab. 83, 1988–1992 (1998).

    CAS  Google Scholar 

  21. Yang, D. S., Ghaffari, R. & Rogers, J. A. Sweat as a diagnostic biofluid. Science 379, 760–761 (2023).

    Article  CAS  Google Scholar 

  22. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article  CAS  Google Scholar 

  23. Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016).

    Article  Google Scholar 

  24. Yang, Y. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217–224 (2020).

    Article  CAS  Google Scholar 

  25. Sempionatto, J. R. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021).

    Article  CAS  Google Scholar 

  26. Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 7, 887–907 (2022).

    Article  Google Scholar 

  27. Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).

    Article  CAS  Google Scholar 

  28. Sempionatto, J. R., Lasalde-Ramírez, J. A., Mahato, K., Wang, J. & Gao, W. Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6, 899–915 (2022).

    Article  Google Scholar 

  29. Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article  CAS  Google Scholar 

  30. Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019).

    Article  CAS  Google Scholar 

  31. Sinha, A. et al. MXene: an emerging material for sensing and biosensing. Trends Anal. Chem. 105, 424–435 (2018).

    Article  CAS  Google Scholar 

  32. Babar, Z. U. D., Della Ventura, B., Velotta, R. & Iannotti, V. Advances and emerging challenges in MXenes and their nanocomposites for biosensing applications. RSC Adv. 12, 19590–19610 (2022).

    Article  CAS  Google Scholar 

  33. UNAFold Web Server. DNA Folding Form (n.d.);

  34. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  Google Scholar 

  35. Rangel, A. E., Hariri, A. A., Eisenstein, M. & Soh, H. T. Engineering aptamer switches for multifunctional stimulus‐responsive nanosystems. Adv. Mater. 32, 2003704 (2020).

    Article  CAS  Google Scholar 

  36. Pandey, R. et al. Integrating programmable DNAzymes with electrical readout for rapid and culture-free bacterial detection using a handheld platform. Nat. Chem. 13, 895–901 (2021).

    Article  CAS  Google Scholar 

  37. Li, J., Rossignol, F. & Macdonald, J. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing. Lab. Chip 15, 2538–2558 (2015).

    Article  CAS  Google Scholar 

  38. VahidMohammadi, A., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021).

    Article  CAS  Google Scholar 

  39. Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 1225–1235 (2022).

    Article  CAS  Google Scholar 

  40. Yu, Y. et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 5, eaaz7946 (2020).

    Article  Google Scholar 

  41. Min, J. et al. An autonomous wearable biosensor powered by a perovskite solar cell. Nat. Electron. 6, 630–641 (2023).

    Article  CAS  Google Scholar 

  42. Choi, J., Kang, D., Han, S., Kim, S. B. & Rogers, J. A. Thin, soft, skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat. Adv. Healthc. Mater. 6, 1601355 (2017).

    Article  Google Scholar 

  43. Chenault, J. R., Thatcher, W. W., Kalra, P. S., Abrams, R. M. & Wilcox, C. J. Transitory changes in plasma progestins, estradiol, and luteinizing hormone approaching ovulation in the bovine. J. Dairy Sc. 58, 709–717 (1975).

    Article  CAS  Google Scholar 

  44. Alhabeb, M. et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017).

    Article  CAS  Google Scholar 

  45. Torrente-Rodríguez, R. M. et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2, 921–937 (2020).

    Article  Google Scholar 

  46. Capatina, D. et al. Label-free electrochemical aptasensor for the detection of the 3-O-C12-HSL quorum-sensing molecule in Pseudomonas aeruginosa. Biosensors 12, 440 (2022).

    Article  CAS  Google Scholar 

  47. Torrente-Rodríguez, R. M. et al. SARS-CoV-2 RapidPlex: a graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter 3, 1981–1998 (2020).

    Article  Google Scholar 

  48. Frum, Y., Bonner, M. C., Eccleston, G. M. & Meidan, V. M. The influence of drug partition coefficient on follicular penetration: In vitro human skin studies. Eur. J. Pharm. Sci. 30, 280–287 (2007).

    Article  CAS  Google Scholar 

  49. Sparrenberg, L. T., Greiner, B. & Mathis, H. P. Bleaching correction for DNA measurements in highly diluted solutions using confocal microscopy. PLoS ONE 15, e0231918 (2020).

    Article  CAS  Google Scholar 

  50. Salieb-Beugelaar, G. B., Dorfman, K. D., van den Berg, A. & Eijkel, J. C. T. Electrophoretic separation of DNA in gels and nanostructures. Lab. Chip 9, 2508 (2009).

    Article  CAS  Google Scholar 

Download references


This project was supported by the National Institutes of Health grant nos. R01HL155815 and R21DK13266, National Science Foundation grant no. 2145802, Office of Naval Research grant nos. N00014-21-1-2483 and N00014-21-1-2845, American Cancer Society Research Scholar grant no. RSG-21-181-01-CTPS and a Sloan Research Fellowship. We gratefully acknowledge critical support and infrastructure provided for this work by the Kavli Nanoscience Institute at Caltech.

Author information

Authors and Affiliations



W.G. and C.Y. initiated the concept and designed the overall studies. W.G. supervised the work. C.Y. and M.W. led the experiments and collected the overall data. J.M., R.Y.T., H.L., J.R.S. and C.X. contributed to sensor characterization and validation. J.L. contributed to the numerical simulation. All authors contributed the data analysis and provided feedback on the manuscript.

Corresponding author

Correspondence to Wei Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Fabiana Arduini, Eden Morales-Narvaez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, discussion, figures, tables, references and video captions.

Reporting Summary

Supplementary Video 1

Numerical simulation of the electric field enhanced oestradiol sensing.

Supplementary Video 2

Microfluidic sweat sampling using a finger-worn wearable sensor patch.

Supplementary Video 3

Real-time wireless oestradiol monitoring.

Source data

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, C., Wang, M., Min, J. et al. A wearable aptamer nanobiosensor for non-invasive female hormone monitoring. Nat. Nanotechnol. (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research