Abstract
Perovskite light-emitting diodes (LEDs) have reached external quantum efficiencies of over 20% for various colours, showing great potential for display and lighting applications. Despite the internal quantum efficiencies of the best-performing devices already approaching unity, around 80% of the internally generated photons are trapped in the devices and lose energy through a variety of lossy channels. Significant opportunities for improving efficiency and maximizing photon extraction lie in the effective management of light. In this Review we analyse light management strategies based on the intrinsic optical properties of the perovskite materials and the extrinsic properties related to device structures. These approaches should allow the external quantum efficiencies of perovskite LEDs to substantially exceed the conventional limits of planar organic LED devices. By revisiting lessons learned from organic LEDs and perovskite solar cells, we highlight possible directions of future research towards perovskite LEDs with ultrahigh efficiencies.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).
Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).
Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).
Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12, 681–687 (2018).
Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).
Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).
Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).
Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photon. 16, 637–643 (2022).
Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022). (2022).
Han, T. H. et al. A roadmap for the commercialization of perovskite light emitters. Nat. Rev. Mater. 7, 757–777 (2022).
Liu, S. et al. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv. 5, eaav9445 (2019).
Cho, C. et al. The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).
Stranks, S. D. et al. The physics of light emission in halide perovskite devices. Adv. Mater. 31, 1803336 (2019).
Zhao, X. & Tan, Z. K. Large-area near-infrared perovskite light-emitting diodes. Nat. Photon. 14, 215–218 (2019).
Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).
Zhao, B. et al. Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 3, 704–710 (2020).
Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).
Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).
Jiang, Y. et al. Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun. 12, 336 (2021).
Hutter, E. M. et al. Direct–indirect character of the bandgap in methylammonium lead iodide perovskite. Nat. Mater. 16, 115–120 (2016).
Li, P. et al. Multiple-quantum-well perovskite for hole-transport-layer-free light-emitting diodes. Chin. Chem. Lett. 33, 1017–1020 (2022).
Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).
Ban, M. et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat. Commun. 9, 3892 (2018).
Zou, W. et al. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9, 608 (2018).
Zhang, Q. et al. Light out-coupling management in perovskite LEDs—what can we learn from the past? Adv. Funct. Mater. 30, 2002570 (2020).
Shen, Y. et al. High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Adv. Mater. 31, 1901517 (2019).
Zhao, L., Lee, K. M., Roh, K., Khan, S. U. Z. & Rand, B. P. Improved outcoupling efficiency and stability of perovskite light-emitting diodes using thin emitting layers. Adv. Mater. 31, 1805836 (2019).
Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Commun. 7, 13941 (2016).
He, S. et al. Tailoring the refractive index and surface defects of CsPbBr3 quantum dots via alkyl cation-engineering for efficient perovskite light-emitting diodes. Chem. Eng. J. 425, 130678 (2021).
Shi, X. B. et al. Optical energy losses in organic–inorganic hybrid perovskite light-emitting diodes. Adv. Opt. Mater. 6, 1800667 (2018).
Wan, Q. et al. Ultrathin light-emitting diodes with external efficiency over 26% based on resurfaced perovskite nanocrystals. ACS Energy Lett. 13, 927–934 (2023).
Zou, C. & Lin, L. Y. Effect of emitter orientation on the outcoupling efficiency of perovskite light-emitting diodes. Opt. Lett. 45, 4786–4789 (2020).
Werner, J. et al. Complex refractive indices of cesium-formamidinium-based mixed-halide perovskites with optical band gaps from 1.5 to 1.8 eV. ACS Energy Lett. 3, 742–747 (2018).
Liu, Z. et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 33, 2103268 (2021).
Bowman, A. R., Anaya, M., Greenham, N. C. & Stranks, S. D. Quantifying photon recycling in solar cells and light-emitting diodes: absorption and emission are always key. Phys. Rev. Lett. 125, 067401 (2020).
Chen, J., Ma, P., Chen, W. & Xiao, Z. Overcoming outcoupling limit in perovskite light-emitting diodes with enhanced photon recycling. Nano Lett. 21, 8426–8432 (2021).
Fieramosca, A. et al. Tunable Out-of-plane excitons in 2D single-crystal perovskites. ACS Photon. 5, 4179–4185 (2018).
Walters, G. et al. Directional light emission from layered metal halide perovskite crystals. J. Phys. Chem. Lett. 11, 3458–3465 (2020).
Jurow, M. J. et al. Tunable anisotropic photon emission from self-organized CsPbBr3 perovskite nanocrystals. Nano Lett. 17, 4534–4540 (2017).
Jurow, M. J. et al. Manipulating the transition dipole moment of CsPbBr3 perovskite nanocrystals for superior optical properties. Nano Lett. 19, 2489–2496 (2019).
Cui, J. et al. Efficient light-emitting diodes based on oriented perovskite nanoplatelets. Sci. Adv. 7, eabg8458 (2021).
Morgenstern, T. et al. Elucidating the performance limits of perovskite nanocrystal light emitting diodes. J. Lumin. 220, 116939 (2020).
Proppe, A. H. et al. Transition dipole moments of n = 1, 2, and 3 perovskite quantum wells from the optical stark effect and many-body perturbation theory. J. Phys. Chem. Lett. 11, 716–723 (2020).
Cho, C. & Greenham, N. C. Computational study of dipole radiation in re-absorbing perovskite semiconductors for optoelectronics. Adv. Sci. 8, 2003559 (2021).
Liu, Y. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photon. 13, 760–764 (2019).
Ziebarth, J. M., Saafir, A. K., Fan, S. & McGehee, M. D. Extracting light from polymer light-emitting diodes using stamped bragg gratings. Adv. Funct. Mater. 14, 451–456 (2004).
Sun, Y. & Forrest, S. R. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nat. Photon. 2, 483–487 (2008).
Zhang, Q. et al. Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates. Nat. Commun. 10, 727 (2019).
Jeon, S. et al. Perovskite light-emitting diodes with improved outcoupling using a high-index contrast nanoarray. Small 15, 1900135 (2019).
Shen, Y. et al. Interfacial nucleation seeding for electroluminescent manipulation in blue perovskite light-emitting diodes. Adv. Funct. Mater. 31, 2103870 (2021).
Mehta, D. S., Saxena, K., Rai, V. K., Srivastava, R. & Kamalasanan, M. N. Enhancement of light out-coupling efficiency of organic light-emitting devices by anti-reflection coating technique. In 2007 International Workshop on Physics of Semiconductor Devices 628–629 (IEEE, 2007).
Meng, S. S., Li, Y. Q. & Tang, J. X. Theoretical perspective to light outcoupling and management in perovskite light-emitting diodes. Org. Electron. 61, 351–358 (2018).
Kim, H. P. et al. High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite. Adv. Opt. Mater. 5, 1600920 (2017).
Fakharuddin, A. et al. Reduced efficiency roll-off and improved stability of mixed 2D/3D perovskite light emitting diodes by balancing charge injection. Adv. Funct. Mater. 29, 1904101 (2019).
Weidlich, A. & Wilkie, A. Anomalous dispersion in predictive rendering. Comput. Graph. Forum 28, 1065–1072 (2009).
Usha, K. S., Sivakumar, R. & Sanjeeviraja, C. Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequency magnetron sputtering technique. J. Appl. Phys. 114, 123501 (2013).
Fang, C. Y. et al. Nanoparticle stacks with graded refractive indices enhance the omnidirectional light harvesting of solar cells and the light extraction of light-emitting diodes. Adv. Funct. Mater. 23, 1412–1421 (2013).
Schubert, E. F. et al. Highly efficient light-emitting diodes with microcavities. Science 265, 943–945 (1994).
Purcell, E. M. in Confined Electrons and Photons (eds Burstein, E. & Weisbuch, C.) 839–839 (Springer, 1995).
Lüssem, B., Leo, K., Thomschke, M. & Hofmann, S. Top-emitting organic light-emitting diodes. Opt. Express 19, A1250–A1264 (2011).
Miao, Y. et al. Microcavity top-emission perovskite light-emitting diodes. Light Sci. Appl. 9, 89 (2020).
Gu, L., Wen, K., Peng, Q., Huang, W. & Wang, J. Surface-plasmon-enhanced perovskite light-emitting diodes. Small 16, 2001861 (2020).
Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).
Xu, L. et al. Surface plasmon enhanced luminescence from organic-inorganic hybrid perovskites. Appl. Phys. Lett. 110, 233113 (2017).
Cai, C. et al. Photoluminescence enhancement in wide spectral range excitation in CsPbBr3 nanocrystal/Ag nanostructure via surface plasmon coupling. Opt. Lett. 44, 658–661 (2019).
Li, D. et al. Plasmonic photonic crystals induced two-order fluorescence enhancement of blue perovskite nanocrystals and its application for high-performance flexible ultraviolet photodetectors. Adv. Funct. Mater. 28, 1804429 (2018).
Zhang, K. et al. Silver nanoparticles enhanced luminescence and stability of CsPbBr3 perovskite quantum dots in borosilicate glass. J. Am. Ceram. Soc. 103, 2463–2470 (2020).
Bayles, A. et al. Localized surface plasmon effects on the photophysics of perovskite thin films embedding metal nanoparticles. J. Mater. Chem. C 8, 916–921 (2020).
Zhang, X. et al. Plasmonic perovskite light-emitting diodes based on the Ag-CsPbBr3 system. ACS Appl. Mater. Interf. 9, 4926–4931 (2017).
Cai, C., Bi, G., Wu, H. & Zhai, J. Electron energy transfer effect in Au NS/CH3NH3PbI3-xClx heterostructures via localized surface plasmon resonance coupling. Opt. Lett. 41, 4297–4300 (2016).
Storm, M. M. et al. Spectral behavior of plasmon enhanced fluorescence in organic–inorganic perovskite quantum dot solutions. Phys. Scr. 94, 055503 (2019).
Juan, F. et al. Photoluminescence enhancement of perovskite CsPbBr3 quantum dots by plasmonic Au nanorods. Chem. Phys. 530, 110627 (2020).
Chen, P. et al. Nearly 100% efficiency enhancement of CH3NH3PbBr3 perovskite light-emitting diodes by utilizing plasmonic Au nanoparticles. J. Phys. Chem. Lett. 8, 3961–3969 (2017).
Liu, J. et al. Rational energy band alignment and Au nanoparticles in surface plasmon enhanced Si-based perovskite quantum dot light-emitting diodes. Adv. Opt. Mater. 6, 1800693 (2018).
Zhang, Y. et al. Enhancing luminescence in all-inorganic perovskite surface plasmon light-emitting diode by incorporating Au-Ag alloy nanoparticle. Opt. Mater. 89, 563–567 (2019).
Shi, Z. et al. Localized surface plasmon enhanced all-inorganic perovskite quantum dot light-emitting diodes based on coaxial core/shell heterojunction architecture. Adv. Funct. Mater. 28, 1707031 (2018).
Möller, S. & Forrest, S. R. Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. J. Appl. Phys. 91, 3324 (2002).
Do, Y. R., Kim, Y. C., Song, Y. W. & Lee, Y. H. Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure. J. Appl. Phys. 96, 7629 (2004).
Feng, J., Kawata, S. & Okamoto, T. Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling. Opt. Lett. 30, 2302–2304 (2005).
Agrawal, M., Sun, Y., Forrest, S. R. & Peumans, P. Enhanced outcoupling from organic light-emitting diodes using aperiodic dielectric mirrors. Appl. Phys. Lett. 90, 241112 (2007).
Tsutsui, T., Yahiro, M., Yokogawa, H., Kawano, K. & Yokoyama, M. Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer. Adv. Mater. 13, 1149–1152 (2001).
Gifford, D. K. & Hall, D. G. Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling. Appl. Phys. Lett. 81, 4315 (2002).
Salehi, A., Chen, Y., Fu, X., Peng, C. & So, F. Manipulating refractive index in organic light-emitting diodes. ACS Appl. Mater. Interf. 10, 9595–9601 (2018).
Lee, K. H. et al. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots. ACS Nano 8, 4893–4901 (2014).
Pan, J. et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28, 8718–8725 (2016).
Kim, Y. H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15, 148–155 (2021).
Kumar, S. et al. Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes. Nat. Commun. 13, 2106 (2022).
Chen, W. et al. Highly bright and stable single-crystal perovskite light-emitting diodes. Nat. Photon. 17, 401–407 (2023).
Sun, Y. et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 615, 830–835 (2023).
Ye, Y.-C. et al. Minimizing optical energy losses for long-lifetime perovskite light-emitting diodes. Adv. Funct. Mater. 31, 2105813 (2021).
Acknowledgements
This work was supported by the National Key Research and Development Program of China (grant numbers 2022YFA1204800 and 2018YFB2200401), the National Natural Science Foundation of China (NSFC) (grant numbers 61975180, 62274144 and 62005243), Kun-Peng Programme of Zhejiang Province (D.D.), Natural Science Foundation of Zhejiang Province (grant number LR21F050003) (B.Z.), Fundamental Research Funds for the Central Universities, Zhejiang University Education Foundation Global Partnership Fund (D.D.), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number NRF-2022R1I1A1A01061848) (A.R.B.M.Y), Ausschuss für Forschungsfragen (AFF) of the University of Konstanz for Young Scholar Fund (A.F.), and European Commision in the framework of Marie Skłodowska-Curie Individual Fellowships (grant number 101030985 — RADICEL) (A.F.).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Nanotechnology thanks Tae-Woo Lee and Wanyi Nie for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhao, B., Vasilopoulou, M., Fakharuddin, A. et al. Light management for perovskite light-emitting diodes. Nat. Nanotechnol. 18, 981–992 (2023). https://doi.org/10.1038/s41565-023-01482-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41565-023-01482-4
This article is cited by
-
Competing light extraction strategies in perovskite light-emitting diodes
Nature Nanotechnology (2024)
-
Thermal management towards ultra-bright and stable perovskite nanocrystal-based pure red light-emitting diodes
Nature Communications (2024)
-
Vapour-deposited perovskite light-emitting diodes
Nature Reviews Materials (2024)
-
Perovskites light a path forward
Nature Nanotechnology (2024)
-
Advances in understanding quantum dot light-emitting diodes
Nature Reviews Electrical Engineering (2024)