Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Light management for perovskite light-emitting diodes

Abstract

Perovskite light-emitting diodes (LEDs) have reached external quantum efficiencies of over 20% for various colours, showing great potential for display and lighting applications. Despite the internal quantum efficiencies of the best-performing devices already approaching unity, around 80% of the internally generated photons are trapped in the devices and lose energy through a variety of lossy channels. Significant opportunities for improving efficiency and maximizing photon extraction lie in the effective management of light. In this Review we analyse light management strategies based on the intrinsic optical properties of the perovskite materials and the extrinsic properties related to device structures. These approaches should allow the external quantum efficiencies of perovskite LEDs to substantially exceed the conventional limits of planar organic LED devices. By revisiting lessons learned from organic LEDs and perovskite solar cells, we highlight possible directions of future research towards perovskite LEDs with ultrahigh efficiencies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of light management in PeLEDs.
Fig. 2: Optical power distributions and losses in PeLEDs.
Fig. 3: Analyses of the photon recycling effect in PeLEDs.
Fig. 4: Effects of transition dipole moment orientations in PeLEDs.
Fig. 5: Micro/nanostructured light scatterers and outcouplers for PeLEDs.
Fig. 6: Refractive index matching and optical microcavity effects in PeLEDs.
Fig. 7: Other light outcoupling approaches for thin-film LEDs.

Similar content being viewed by others

References

  1. Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).

    Article  CAS  Google Scholar 

  4. Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12, 681–687 (2018).

    Article  CAS  Google Scholar 

  5. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).

    Article  CAS  Google Scholar 

  8. Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photon. 16, 637–643 (2022).

    Article  CAS  Google Scholar 

  9. Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022). (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Han, T. H. et al. A roadmap for the commercialization of perovskite light emitters. Nat. Rev. Mater. 7, 757–777 (2022).

    Article  Google Scholar 

  11. Liu, S. et al. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv. 5, eaav9445 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cho, C. et al. The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stranks, S. D. et al. The physics of light emission in halide perovskite devices. Adv. Mater. 31, 1803336 (2019).

    Article  CAS  Google Scholar 

  14. Zhao, X. & Tan, Z. K. Large-area near-infrared perovskite light-emitting diodes. Nat. Photon. 14, 215–218 (2019).

    Article  Google Scholar 

  15. Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).

    Article  CAS  Google Scholar 

  16. Zhao, B. et al. Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 3, 704–710 (2020).

    Article  CAS  Google Scholar 

  17. Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    Article  CAS  Google Scholar 

  18. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Jiang, Y. et al. Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun. 12, 336 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hutter, E. M. et al. Direct–indirect character of the bandgap in methylammonium lead iodide perovskite. Nat. Mater. 16, 115–120 (2016).

    Article  PubMed  Google Scholar 

  21. Li, P. et al. Multiple-quantum-well perovskite for hole-transport-layer-free light-emitting diodes. Chin. Chem. Lett. 33, 1017–1020 (2022).

    Article  CAS  Google Scholar 

  22. Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Ban, M. et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat. Commun. 9, 3892 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zou, W. et al. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9, 608 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang, Q. et al. Light out-coupling management in perovskite LEDs—what can we learn from the past? Adv. Funct. Mater. 30, 2002570 (2020).

    Article  CAS  Google Scholar 

  26. Shen, Y. et al. High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Adv. Mater. 31, 1901517 (2019).

    Article  Google Scholar 

  27. Zhao, L., Lee, K. M., Roh, K., Khan, S. U. Z. & Rand, B. P. Improved outcoupling efficiency and stability of perovskite light-emitting diodes using thin emitting layers. Adv. Mater. 31, 1805836 (2019).

    Article  Google Scholar 

  28. Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Commun. 7, 13941 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. He, S. et al. Tailoring the refractive index and surface defects of CsPbBr3 quantum dots via alkyl cation-engineering for efficient perovskite light-emitting diodes. Chem. Eng. J. 425, 130678 (2021).

    Article  CAS  Google Scholar 

  30. Shi, X. B. et al. Optical energy losses in organic–inorganic hybrid perovskite light-emitting diodes. Adv. Opt. Mater. 6, 1800667 (2018).

    Article  Google Scholar 

  31. Wan, Q. et al. Ultrathin light-emitting diodes with external efficiency over 26% based on resurfaced perovskite nanocrystals. ACS Energy Lett. 13, 927–934 (2023).

    Article  Google Scholar 

  32. Zou, C. & Lin, L. Y. Effect of emitter orientation on the outcoupling efficiency of perovskite light-emitting diodes. Opt. Lett. 45, 4786–4789 (2020).

    Article  PubMed  Google Scholar 

  33. Werner, J. et al. Complex refractive indices of cesium-formamidinium-based mixed-halide perovskites with optical band gaps from 1.5 to 1.8 eV. ACS Energy Lett. 3, 742–747 (2018).

    Article  CAS  Google Scholar 

  34. Liu, Z. et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 33, 2103268 (2021).

    Article  CAS  Google Scholar 

  35. Bowman, A. R., Anaya, M., Greenham, N. C. & Stranks, S. D. Quantifying photon recycling in solar cells and light-emitting diodes: absorption and emission are always key. Phys. Rev. Lett. 125, 067401 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, J., Ma, P., Chen, W. & Xiao, Z. Overcoming outcoupling limit in perovskite light-emitting diodes with enhanced photon recycling. Nano Lett. 21, 8426–8432 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Fieramosca, A. et al. Tunable Out-of-plane excitons in 2D single-crystal perovskites. ACS Photon. 5, 4179–4185 (2018).

    Article  CAS  Google Scholar 

  38. Walters, G. et al. Directional light emission from layered metal halide perovskite crystals. J. Phys. Chem. Lett. 11, 3458–3465 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Jurow, M. J. et al. Tunable anisotropic photon emission from self-organized CsPbBr3 perovskite nanocrystals. Nano Lett. 17, 4534–4540 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Jurow, M. J. et al. Manipulating the transition dipole moment of CsPbBr3 perovskite nanocrystals for superior optical properties. Nano Lett. 19, 2489–2496 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Cui, J. et al. Efficient light-emitting diodes based on oriented perovskite nanoplatelets. Sci. Adv. 7, eabg8458 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morgenstern, T. et al. Elucidating the performance limits of perovskite nanocrystal light emitting diodes. J. Lumin. 220, 116939 (2020).

    Article  CAS  Google Scholar 

  43. Proppe, A. H. et al. Transition dipole moments of n = 1, 2, and 3 perovskite quantum wells from the optical stark effect and many-body perturbation theory. J. Phys. Chem. Lett. 11, 716–723 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Cho, C. & Greenham, N. C. Computational study of dipole radiation in re-absorbing perovskite semiconductors for optoelectronics. Adv. Sci. 8, 2003559 (2021).

    Article  CAS  Google Scholar 

  45. Liu, Y. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photon. 13, 760–764 (2019).

    Article  CAS  Google Scholar 

  46. Ziebarth, J. M., Saafir, A. K., Fan, S. & McGehee, M. D. Extracting light from polymer light-emitting diodes using stamped bragg gratings. Adv. Funct. Mater. 14, 451–456 (2004).

    Article  CAS  Google Scholar 

  47. Sun, Y. & Forrest, S. R. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nat. Photon. 2, 483–487 (2008).

    Article  CAS  Google Scholar 

  48. Zhang, Q. et al. Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates. Nat. Commun. 10, 727 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jeon, S. et al. Perovskite light-emitting diodes with improved outcoupling using a high-index contrast nanoarray. Small 15, 1900135 (2019).

    Article  Google Scholar 

  50. Shen, Y. et al. Interfacial nucleation seeding for electroluminescent manipulation in blue perovskite light-emitting diodes. Adv. Funct. Mater. 31, 2103870 (2021).

    Article  CAS  Google Scholar 

  51. Mehta, D. S., Saxena, K., Rai, V. K., Srivastava, R. & Kamalasanan, M. N. Enhancement of light out-coupling efficiency of organic light-emitting devices by anti-reflection coating technique. In 2007 International Workshop on Physics of Semiconductor Devices 628–629 (IEEE, 2007).

  52. Meng, S. S., Li, Y. Q. & Tang, J. X. Theoretical perspective to light outcoupling and management in perovskite light-emitting diodes. Org. Electron. 61, 351–358 (2018).

    Article  CAS  Google Scholar 

  53. Kim, H. P. et al. High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite. Adv. Opt. Mater. 5, 1600920 (2017).

    Article  Google Scholar 

  54. Fakharuddin, A. et al. Reduced efficiency roll-off and improved stability of mixed 2D/3D perovskite light emitting diodes by balancing charge injection. Adv. Funct. Mater. 29, 1904101 (2019).

    Article  Google Scholar 

  55. Weidlich, A. & Wilkie, A. Anomalous dispersion in predictive rendering. Comput. Graph. Forum 28, 1065–1072 (2009).

    Article  Google Scholar 

  56. Usha, K. S., Sivakumar, R. & Sanjeeviraja, C. Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequency magnetron sputtering technique. J. Appl. Phys. 114, 123501 (2013).

    Article  Google Scholar 

  57. Fang, C. Y. et al. Nanoparticle stacks with graded refractive indices enhance the omnidirectional light harvesting of solar cells and the light extraction of light-emitting diodes. Adv. Funct. Mater. 23, 1412–1421 (2013).

    Article  CAS  Google Scholar 

  58. Schubert, E. F. et al. Highly efficient light-emitting diodes with microcavities. Science 265, 943–945 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Purcell, E. M. in Confined Electrons and Photons (eds Burstein, E. & Weisbuch, C.) 839–839 (Springer, 1995).

  60. Lüssem, B., Leo, K., Thomschke, M. & Hofmann, S. Top-emitting organic light-emitting diodes. Opt. Express 19, A1250–A1264 (2011).

    Article  PubMed  Google Scholar 

  61. Miao, Y. et al. Microcavity top-emission perovskite light-emitting diodes. Light Sci. Appl. 9, 89 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gu, L., Wen, K., Peng, Q., Huang, W. & Wang, J. Surface-plasmon-enhanced perovskite light-emitting diodes. Small 16, 2001861 (2020).

    Article  CAS  Google Scholar 

  63. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Xu, L. et al. Surface plasmon enhanced luminescence from organic-inorganic hybrid perovskites. Appl. Phys. Lett. 110, 233113 (2017).

    Article  Google Scholar 

  65. Cai, C. et al. Photoluminescence enhancement in wide spectral range excitation in CsPbBr3 nanocrystal/Ag nanostructure via surface plasmon coupling. Opt. Lett. 44, 658–661 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Li, D. et al. Plasmonic photonic crystals induced two-order fluorescence enhancement of blue perovskite nanocrystals and its application for high-performance flexible ultraviolet photodetectors. Adv. Funct. Mater. 28, 1804429 (2018).

    Article  Google Scholar 

  67. Zhang, K. et al. Silver nanoparticles enhanced luminescence and stability of CsPbBr3 perovskite quantum dots in borosilicate glass. J. Am. Ceram. Soc. 103, 2463–2470 (2020).

    Article  CAS  Google Scholar 

  68. Bayles, A. et al. Localized surface plasmon effects on the photophysics of perovskite thin films embedding metal nanoparticles. J. Mater. Chem. C 8, 916–921 (2020).

    Article  CAS  Google Scholar 

  69. Zhang, X. et al. Plasmonic perovskite light-emitting diodes based on the Ag-CsPbBr3 system. ACS Appl. Mater. Interf. 9, 4926–4931 (2017).

    Article  CAS  Google Scholar 

  70. Cai, C., Bi, G., Wu, H. & Zhai, J. Electron energy transfer effect in Au NS/CH3NH3PbI3-xClx heterostructures via localized surface plasmon resonance coupling. Opt. Lett. 41, 4297–4300 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Storm, M. M. et al. Spectral behavior of plasmon enhanced fluorescence in organic–inorganic perovskite quantum dot solutions. Phys. Scr. 94, 055503 (2019).

    Article  Google Scholar 

  72. Juan, F. et al. Photoluminescence enhancement of perovskite CsPbBr3 quantum dots by plasmonic Au nanorods. Chem. Phys. 530, 110627 (2020).

    Article  CAS  Google Scholar 

  73. Chen, P. et al. Nearly 100% efficiency enhancement of CH3NH3PbBr3 perovskite light-emitting diodes by utilizing plasmonic Au nanoparticles. J. Phys. Chem. Lett. 8, 3961–3969 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Liu, J. et al. Rational energy band alignment and Au nanoparticles in surface plasmon enhanced Si-based perovskite quantum dot light-emitting diodes. Adv. Opt. Mater. 6, 1800693 (2018).

    Article  Google Scholar 

  75. Zhang, Y. et al. Enhancing luminescence in all-inorganic perovskite surface plasmon light-emitting diode by incorporating Au-Ag alloy nanoparticle. Opt. Mater. 89, 563–567 (2019).

    Article  CAS  Google Scholar 

  76. Shi, Z. et al. Localized surface plasmon enhanced all-inorganic perovskite quantum dot light-emitting diodes based on coaxial core/shell heterojunction architecture. Adv. Funct. Mater. 28, 1707031 (2018).

    Article  Google Scholar 

  77. Möller, S. & Forrest, S. R. Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. J. Appl. Phys. 91, 3324 (2002).

    Article  Google Scholar 

  78. Do, Y. R., Kim, Y. C., Song, Y. W. & Lee, Y. H. Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure. J. Appl. Phys. 96, 7629 (2004).

    Article  CAS  Google Scholar 

  79. Feng, J., Kawata, S. & Okamoto, T. Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling. Opt. Lett. 30, 2302–2304 (2005).

    Article  PubMed  Google Scholar 

  80. Agrawal, M., Sun, Y., Forrest, S. R. & Peumans, P. Enhanced outcoupling from organic light-emitting diodes using aperiodic dielectric mirrors. Appl. Phys. Lett. 90, 241112 (2007).

    Article  Google Scholar 

  81. Tsutsui, T., Yahiro, M., Yokogawa, H., Kawano, K. & Yokoyama, M. Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer. Adv. Mater. 13, 1149–1152 (2001).

    Article  CAS  Google Scholar 

  82. Gifford, D. K. & Hall, D. G. Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling. Appl. Phys. Lett. 81, 4315 (2002).

    Article  CAS  Google Scholar 

  83. Salehi, A., Chen, Y., Fu, X., Peng, C. & So, F. Manipulating refractive index in organic light-emitting diodes. ACS Appl. Mater. Interf. 10, 9595–9601 (2018).

    Article  CAS  Google Scholar 

  84. Lee, K. H. et al. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots. ACS Nano 8, 4893–4901 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Pan, J. et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28, 8718–8725 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Kim, Y. H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15, 148–155 (2021).

    Article  CAS  Google Scholar 

  87. Kumar, S. et al. Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes. Nat. Commun. 13, 2106 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, W. et al. Highly bright and stable single-crystal perovskite light-emitting diodes. Nat. Photon. 17, 401–407 (2023).

    Article  CAS  Google Scholar 

  89. Sun, Y. et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 615, 830–835 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Ye, Y.-C. et al. Minimizing optical energy losses for long-lifetime perovskite light-emitting diodes. Adv. Funct. Mater. 31, 2105813 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (grant numbers 2022YFA1204800 and 2018YFB2200401), the National Natural Science Foundation of China (NSFC) (grant numbers 61975180, 62274144 and 62005243), Kun-Peng Programme of Zhejiang Province (D.D.), Natural Science Foundation of Zhejiang Province (grant number LR21F050003) (B.Z.), Fundamental Research Funds for the Central Universities, Zhejiang University Education Foundation Global Partnership Fund (D.D.), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number NRF-2022R1I1A1A01061848) (A.R.B.M.Y), Ausschuss für Forschungsfragen (AFF) of the University of Konstanz for Young Scholar Fund (A.F.), and European Commision in the framework of Marie Skłodowska-Curie Individual Fellowships (grant number 101030985 — RADICEL) (A.F.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abd. Rashid bin Mohd Yusoff, Richard H. Friend or Dawei Di.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Tae-Woo Lee and Wanyi Nie for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Vasilopoulou, M., Fakharuddin, A. et al. Light management for perovskite light-emitting diodes. Nat. Nanotechnol. 18, 981–992 (2023). https://doi.org/10.1038/s41565-023-01482-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01482-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing