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Nanopore sequencing of DNA-barcoded 
probes for highly multiplexed detection of 
microRNA, proteins and small biomarkers

Caroline Koch1,4, Benedict Reilly-O’Donnell    1,2,4, Richard Gutierrez3, 
Carla Lucarelli2, Fu Siong Ng    2, Julia Gorelik    2, Aleksandar P. Ivanov    1  & 
Joshua B. Edel    1 

There is an unmet need to develop low-cost, rapid and highly multiplexed 
diagnostic technology platforms for quantitatively detecting blood 
biomarkers to advance clinical diagnostics beyond the single biomarker 
model. Here we perform nanopore sequencing of DNA-barcoded molecular 
probes engineered to recognize a panel of analytes. This allows for highly 
multiplexed and simultaneous quantitative detection of at least 40 targets, 
such as microRNAs, proteins and neurotransmitters, on the basis of the 
translocation dynamics of each probe as it passes through a nanopore. 
Our workflow is built around a commercially available MinION sequencing 
device, offering a one-hour turnaround time from sample preparation 
to results. We also demonstrate that the strategy can directly detect 
cardiovascular disease-associated microRNA from human serum without 
extraction or amplification. Due to the modularity of barcoded probes, the 
number and type of targets detected can be significantly expanded.

The detection of blood serum biomarkers is one of the most common 
methods for diagnosis, prognosis, predicting future disease and moni-
toring response to treatment. Biochemicals have been used for over 60 
years to aid diagnosis of a wide range of conditions, including cancer1, 
pregnancy2 and cardiac disease3. Biomarker tests traditionally rely on 
the detection of proteins to indicate a condition. However, these tests 
often lack the specificity to provide clinically useful detail on the pathol-
ogy4,5. To increase the specificity in detecting diseases, multiplexed 
biomarker assays have been developed. Such strategies have been 
attempted in several areas, including Alzheimer’s disease6,7, amyo-
trophic lateral sclerosis8, cardiovascular disease9–11, chronic obstructive 
pulmonary disease12, infection13 and cancers14–17. Many of the method-
ologies employed rely upon antibody recognition of an epitope and an 
associated optical readout for each analyte, for example, ELISA, which 
can be sensitive to pM levels of analyte. Commercially available systems 
can detect up to 80 proteins simultaneously18,19. Other methods use 

modified DNA-based aptamers, which allow the detection of multiple 
proteins in a single sample with a sensitivity down to 125 fM (refs. 20,21). 
These techniques offer promising tools for high-throughput protein 
biomarker detection but are unable to observe multiple molecular 
species simultaneously.

Clinical diagnostics are now moving beyond protein biomark-
ers and genetic testing. One example is microRNAs (miRNAs), short 
non-coding RNAs that regulate gene expression22,23. Alterations in 
miRNA expression have been identified in a wide range of clinical 
areas, such as cardiology24, hepatology25, nephrology26, neurology27, 
oncology28 and vascular disease29. These molecules are detected in 
the blood primarily through reverse transcription–quantitative PCR 
(RT–qPCR)30, which is sensitive down to fM. However, this method 
requires multiple steps and relies on signal amplification, which may 
introduce bias in the measurement. Furthermore, the rapid degrada-
tion of miRNAs provides a particular problem when considering their 
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Biological nanopores are advantageous over solid-state devices as 
they are highly reproducible and can be engineered for specific func-
tionality44. In particular, biological nanopores are useful for DNA/RNA 
sequencing, as shown by Oxford Nanopore Technologies (ONT). ONT 
has commercialized sequencing devices that use biological nanopore 
arrays to allow for high-throughput, simultaneous DNA/RNA reads45 
of fragments ≥20 base pairs46.

This study showcases a multiplexed analyte detection strategy, 
combining nanopore sequencing with DNA-barcoded molecular 
probes. The platform allows accurate demultiplexing of events, with 
simultaneous quantitative detection of at least 40 molecules that 
can consist of miRNAs, proteins and small molecules, such as neu-
rotransmitters. The presence of each analyte is determined by the 
translocation dynamics of each probe as it passes through a nanopore. 
In this study, we selected 40 miRNAs and proteins implicated in car-
diac disease. The method established is easily adaptable and scalable, 
meaning the number of detected biomarkers can be extended to cover 
multiple diseases. The assay requires a sample volume of less than 30 μl, 
does not require sample labelling or amplification and costs less than 
US$100. Furthermore, the technology bears the potential for pooled 

use in a clinical setting. A rapid miRNA profiling platform would offer 
the potential to capture short-lived events and perform frequent lon-
gitudinal testing.

There is, therefore, a great need to develop technologies that 
can perform highly multiplexed detection of various analyte classes, 
including nucleic acids, proteins and small molecules. Single-molecule 
nanopore sensing offers the ideal platform for performing this task. 
Nanopores have previously been shown to enable efficient detection 
of DNA, RNA, proteins and other molecules31–35, albeit not in a highly 
multiplexed configuration. Analyte detection by nanopores depends 
on measuring current fluctuations as charged molecules are electro-
phoretically driven through a nanoscale aperture. The translocation 
of a molecule through a nanopore causes a change in the ionic current, 
which is dependent on the molecule’s charge, size and conformation36. 
However, the method generally lacks selectivity. Strategies to address 
these limitations include chemical modifications of the pore37–40, the 
use of molecular carriers41 and the use of electro-optical methods42,43. 
These methods are excellent for the detection of molecules at very low 
concentrations without amplification; however, their throughput and 
multiplexing ability are limited.
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Fig. 1 | Demultiplexing of 40 miRNAs, proteins and small molecules using 
barcoded probes and nanopore sequencing. a, Workflow for detection of 
miRNAs, proteins and small molecules. Barcoded probes (i) were incubated with 
synthetic targets or serum samples from healthy participants (ii). Nanopore 
sequencing was performed to classify the barcode, and the presence of target 
analytes (iii) was determined. b, Barcoded probe design. The probe consists of a 
Y-adapter containing the motor protein; the barcode region, containing 35 bases; 

and the target binding region at the 5′ end of the probe, which includes either 
a complementary sequence to a miRNA or an aptamer designed to specifically 
bind a protein or small molecule. c, Characteristic current traces. Example events 
are highlighted for barcoded probe only and barcoded probe events with bound 
target analytes. d, Base calling and analysis of events from barcoded probes 
result in current traces without delay (i). Base calling and analysis of events from 
barcoded probes with analyte bound results in current traces with a delay (ii).
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patient analysis, which could further reduce the cost per test. Due to the 
simplicity of the experimental protocol, the portability of the platform 
and the rapid turnaround time for experiments, we are confident that 
this approach could have an extensive impact on current diagnostics.

Strategy for the multiplexed detection of 
analytes
A highly multiplexed detection strategy was achieved by combining 
nanopore sequencing with barcoded molecular probes that selectively 
bind to target analytes (Fig. 1a and Supplementary Table 1). Barcoded 
probes were incubated with target analytes (miRNAs, proteins, small 
molecules), sequenced with the MinION device (ONT) and, subse-
quently, the presence of target analytes was determined. The barcoded 
probes consist of three key regions: (1) adapter; (2) barcode; and (3) 
target binding region (Fig. 1b). The adapter is identical for all probes. 
The barcode sequence acts as a unique identifier and can have many per-
mutations, with theoretically up to 1.18 × 1021 distinctive arrangements 
of the nucleotides for the barcode length used in these experiments. 
The target binding region can either be a complementary sequence 
(to bind miRNA or DNA) or an aptamer (to bind proteins and small 
molecules). The translocation of hybridized probes (target is bound) 
is slowed since the nanopore geometry does not allow the passage of 

a double-strand or protein/small molecule to feed through the nano-
pore (Fig. 1c). The slowed translocation can be observed in the event 
current signal as a ‘delay’ period. Events can then be subclassified with 
or without delay (Fig. 1d), revealing at the single-molecule level the 
presence of an analyte (Supplementary Fig. 1), whilst the sequenced 
barcode classifies the analyte being targeted.

To establish the multiplexed platform, we designed 40 unique 
barcoded probes to detect miRNAs implicated in cardiac disease. The 
accuracy of barcode base calling and classification was determined in 
experiments without target analytes (Fig. 2). Events were sequenced 
and aligned against a barcode library with known barcode sequences 
(Supplementary Table 1). For example, the alignment score of a unique 
barcode, ‘barcode 38’, is shown in Fig. 2a. The normalized alignment 
score of events for the true sequence was significantly higher compared 
to all other barcode sequences in the library (Fig. 2a, Supplementary 
Fig. 2a and Supplementary Table 2). However, alignment scoring was 
not suitable in multiplexed experiments due to the occurrence of 
false positives. To address this, a series of thresholds were tested, 
including: (1) the number of mismatches; (2) x mismatches in the first 
y bases; (3) number of aligned bases; and (4) sequence beginning with 
the bases ‘GGG’ (Fig. 2b). It was found that reducing the total num-
ber of mismatched bases worked poorly on its own (area under the 
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Fig. 2 | Highly accurate detection of nucleic acid barcodes. a, Alignment scores 
of a barcoded probe 38 experiment. Sequenced events were aligned against a 
barcode library containing all 40 barcoded probe sequences. The alignment 
score for barcoded probe 38 was significantly higher (analysis of variance 
(ANOVA), F (39, 17,360) = [3,441.41], ****P = 0, n = 3, ntotal events = 454) than all other 
alignment scores observed. Data presented as mean ± s.d. b, Receiver operating 
characteristic curve showing the FPR and true-positive rate (TPR) of various 
alignment thresholds including n aligned bases; n mismatched bases allowed; 
sequence starts with x; x mismatches allowed in first y bases and a combination 
(n = 3). c, Confusion matrix of alignment accuracy of single barcoded probe 
experiments. Accuracy was >95% for all 40 barcoded probes tested (n = 3,  
ntotal events = 15,489). d, Alignment score of barcoded probe sequences with 1 and 2 
mismatched bases. A multiplexed experiment containing three barcoded probes 

(‘0MM’, GGGTGCACGAGTGCGTGT; ‘1MM’ GGGTACACGAGTGCGTGT; ‘2MM’ 
GGGTACATGAGTGCGTGT) shows a significant difference between alignment 
scores. 0MM events had the highest alignment score for the 0MM sequence 
(ANOVA, F (2, 67,524) = [13,657.25], ****P = 0, n = 4, ntotal events = 22,509) (i). 1MM 
events had the highest alignment score for the 1MM sequence (ANOVA, F (2, 
33,204) = [2,702.66], ****P = 0, n = 4, ntotal events = 11,069) (ii). 2MM events had the 
highest alignment score for the 2MM sequence (ANOVA, F (2, 33,597) = [7,763.95], 
****P = 0, n = 4, ntotal events = 11,200) (iii). Summary statistics for box plots: centre, 
median; bounds of box, interquartile range (IQR) 25th and 75th percentile; 
whiskers, minimum and maximum within 1.5 IQR. Barcoded probe concentration 
was 30 nM in all conditions. All experiments were performed in 2× sequencing 
buffer (700 mM KCl, 50 mM HEPES, 100 mM MgCl2, 100 mM ATP, 4.4 mM EDTA 
(pH 8.0)).
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curve (AUC) = 0.414). We observed that mismatches at the start of the 
sequenced event were particularly indicative of poorly resolved events. 
Consequently, a threshold based on allowing x mismatches in the first 
y bases was found to be moderately effective in removing unwanted 
events (AUC = 0.735). Increasing the total number of aligned bases 
was the second-best applied threshold (AUC = 0.828). Requiring the 
sequenced events to start with G residues (as this is common among 
all barcoded probes) proved to be the most efficient at separating true 
and false events (AUC = 0.846). Finally, we combined each criterion 
to determine the optimum threshold: ≤5 mismatched bases total; 1 
mismatch in the first 10 bases; ≥15 bases aligned in total; sequence 
starts with ‘GGG’ (AUC = 0.805). This configuration did not improve 
sensitivity but markedly reduced the false-positive rate (FPR). The 
optimized thresholds resulted in an accuracy of >95% in the alignment 
of base-called events for single barcoded probe experiments (Fig. 2c).  
To determine the sensitivity of the platform, we tested a barcode 
against two further probes with one and two mismatched bases. In a 
multiplexed experiment with all three of the barcoded probes present, 
the alignment score for the correct barcode was significantly higher 
than the alignment scores of the other sequences (Fig. 2d).

Hybridization of barcoded probes with miRNA
Many miRNAs share similar sequences47. To demonstrate 
sequence-specific miRNA detection, a mixture of 40 barcoded probes 
(30 nM) was incubated with each miRNA (10 nM) individually (Fig. 3a). It 
was found that the percentage delayed events of each barcoded probe 

increased significantly (P < 0.01) when in the presence of its correspond-
ing target miRNA. We assessed the increase in percentage delayed events 
by comparing the miRNA sequence homologies (Supplementary Fig. 3a).  
Using a threshold of ≥90% miRNA sequence similarity (Supplementary 
Fig. 4a) and a significant increase in percentage delay (P ≤ 0.01), we 
found that 2.65% of all classifications were true positive, 0.95% false 
positive, 0% false negative and 96.40% true negative (Fig. 3b), resulting 
in a platform accuracy of 99.05%, specificity of 99.02% and sensitivity 
of 100%. Importantly, we observed that the barcode sequence does not 
influence the percentage delayed events detected for our probes (Sup-
plementary Fig. 4b). In single barcoded probe experiments (for example, 
barcoded probe 38 and miR-221-5p), the total event time increased 
when 50 nM of miRNA was present compared to the control (Fig. 3c and 
Supplementary Fig. 2b). However, it is known that the DNA-controlling 
motor enzyme does not move the probe through the pore at a con-
sistent rate; therefore, the speed at which the barcoded probes are 
translocated varies48. Hence, rather than relying on the translocation 
time, the moving standard deviation of the electrical signal was used to 
identify signal delays. Using this method, it was possible to determine 
a concentration–percentage delay curve for each barcoded probe and 
miRNA combination (R2 ≥ 0.989) (Fig. 3d and Supplementary Fig. 5).

Multiplexed detection of miRNA, protein and 
small molecules
Barcoded probes were incubated with synthetic miRNAs to identify 
whether event delays could be observed in multiplexed conditions  
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(Fig. 4a). It was found that the mean percentage delayed events increased 
when miRNAs were present (0 nM versus 50 nM, 12.32 ± 2.07% versus 
46.99 ± 12.95%, two-tailed t-test, ****P = 3.577 × 10−4, n = 5) (Fig. 4b(i)). 
Without demultiplexing, it was found that there was a linear increase 
in percentage delayed events between 0.1 nM and 10 nM (R2 ≥ 0.988), 
followed by a plateau (Fig. 4b(ii)). The signal was demultiplexed using 
our alignment protocol, identifying individual populations of each 
barcoded probe. We then constructed bespoke concentration–percent-
age delay curves for each probe (Fig. 4b(iii)), and data points for each 
curve were normalized with background subtraction. We next tested 
our ability to quantify multiple miRNAs using a single-blinded test. A 
total of 40 barcoded probes were incubated with a mix of 40 miRNAs 
at various concentrations, ranging from 0.25 nM to 20 nM (Fig. 4c). 
The event files were sent to a blinded researcher who determined the 
percentage delay of each barcoded probe and interpolated the value 
with the standard curves to determine the concentration of the miR-
NAs. After estimating each miRNA concentration, the experiment was 

unblinded and compared to the actual concentration (Fig. 4c(i) and 
Supplementary Fig. 6). Comparison of each miRNA prediction to its true 
value can be made by comparing the colour changes vertically. Similar 
colours mean a close prediction of miRNA concentration to the true 
value. The ratio of predicted concentration:actual concentration was 
plotted, allowing comparison across all 40 barcoded probes; values 
>1 were overpredictions and <1 were underpredicted (Fig. 4c(ii)). The 
accuracy of all predictions was within one order of magnitude of the 
true concentration.

This platform, due to its adaptability, has the potential to detect 
proteins, miRNAs and small molecules in a single experiment. Barcoded 
probes were designed with aptamers specific for each protein and small 
molecule (Supplementary Table 3; aptamer sequences were taken 
from published literature). In single barcoded probe experiments, a 
significant increase in translocation time could be observed when in 
the presence of its corresponding protein in pathophysiological con-
centrations: thrombin (Fig. 5a, *P = 0.030); B-type natriuretic peptide 
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statistics for box plot: centre, median; bounds of box, IQR 25th and 75th 
percentile; whiskers, minimum and maximum within 1.5 IQR. All experiments 
were performed in sequencing buffer.
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(Fig. 5b, **P = 0.008); cardiac troponin T (Fig. 5c, ****P = 1.62 × 10−7); and 
cardiac troponin I (Fig. 5d, ****P = 1.99 × 10−4, all two-tailed t-test). This 
corresponded with a significant increase in the percentage delayed 
events (Fig. 5a–d), suggesting that the detection of proteins is possible 
with this method. Moreover, a significant increase in translocation 
time and percentage delayed events was observed when serotonin 
(150 nM) was incubated with its corresponding barcoded probe (Fig. 5e, 
two-tailed t-test, **P = 0.005), despite our delay algorithm identifying 
a high number of delayed events in the control condition.

Multiplexed experiments were conducted by observing analytes of 
different molecular species. First, a duplex experiment of a small mol-
ecule and a miRNA was conducted. Incubation of barcoded probes with 
50 nM small molecule and ≥3 nM miRNA significantly increased the 
percentage delayed events for each probe (Fig. 5f). We also performed 
a triplex experiment observing a miRNA, small molecule and protein 
simultaneously. The percentage delayed events for each barcoded 
probe increased significantly from the controls when miRNA (≥10 nM), 
small molecule (≥150 nM) and protein (≥50 nM) were present (Fig. 5g).

Detection of miRNAs in human serum
Blood serum from eight healthy participants was tested for the pres-
ence of 40 miRNAs and compared to the negative control (no serum, 
only buffer). To reduce pore blockage (Supplementary Fig. 7), serum 
was centrifuged through a 10 kDa molecular weight cut-off spin filter 
to remove large proteins. The list of miRNAs selected for detection 
in this assay have all been previously associated with cardiovascular 
disease (Supplementary Table 1). The mean percentage delay of all 

miRNAs (not demultiplexed) was increased in each of the eight par-
ticipant samples in three independent experiments; however, no sig-
nificance was determined (Fig. 6a). Interestingly, when the signal was 
demultiplexed, significant changes in percentage delay of miRNAs 
could be observed (Fig. 6b). Of the 40 miRNAs tested, we saw a signifi-
cant increase in 24 miRNAs across all eight participants (Fig. 6b,c and 
Supplementary Fig. 8). The most frequently observed miRNAs across 
all samples were: miR-1233-5p, miR146a-5p, miR211-5p, miR30c-5p, 
miR18a-5p, miR-126-5p and miR193b-3p. To further verify our results, 
we compared percentage delayed events with RT–qPCR of miR-29a in 
four samples. We found that our nanopore-based platform agreed with 
the RT–qPCR assay (Supplementary Fig. 9).

Conclusions
There is a genuine clinical need to develop platforms that can rapidly 
detect multiple biomarkers in patient samples. By expanding the panel 
of molecules observed, it is possible that disease subpopulations could 
be identified and treatment regimens optimized. Detection of biomark-
ers of different molecular species within the same sample could also 
massively reduce the analysis pipeline.

Our data show that barcoded probes, in combination with the ONT 
sequencing platform, offer a highly accurate and sensitive analyte sens-
ing platform with single-molecule resolution. We detected 40 different 
barcoded probes in the same sample and constructed independent 
concentration–delay curves. We then used these standard curves to 
predict miRNA concentrations in a single-blinded experiment. The mul-
tiplexed method was applied to multiple molecular species, allowing 
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us to observe an increase in percentage delayed events due to proteins 
and small molecules (as well as miRNAs). Finally, we showed that the 
platform is compatible with human serum, indicating its potential as 
a biomarker detection platform.

The assay time can be less than 60 minutes in the platform’s current 
configuration. This is a clear improvement compared to other technolo-
gies, which take several hours or even days to complete49. ONT sequenc-
ing software can now spot specific barcode sequences, allowing for live 
demultiplexing, which will further reduce assay time and provide a criti-
cal advantage in the detection of analytes with short half-life. Moreover, 
since the MinION device is highly portable, assays could be performed 
away from the clinic. The speed and portability of the platform offer 
further advantages over other biomarker detection strategies.

The platform can correctly distinguish between barcodes with 
a single nucleotide change in the sequence. Interaction of probes 

was predicted (Supplementary Fig. 3); however, there was no clear 
relationship between dimer formation and event capture rate. This 
indicates that any future applications of this technology will not be 
limited by barcode sequences, but perhaps by the selectivity of the 
binding regions. Our data suggest that miRNA sequences with a simi-
larity ≥90% have the potential to hybridize with the incorrect probe 
(Supplementary Fig. 10); strategies to distinguish between such miR-
NAs must therefore be further developed. There is also potential for 
the large number of biomarkers assessed to result in ‘data blindness’, 
to address this a graphical interface or risk-scoring method must be 
developed to assist the end user.

Currently, the detection limit of the platform for miRNA is 
approximately 50 pM. There is potential to push the technology fur-
ther by reducing the false-negative rate of event alignment. At the 
moment, there are a large number of events that are rejected due to 
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the thresholds applied to ensure high accuracy. One way to reduce this 
event loss and increase events available for delay analysis would be to 
switch to a different nanopore model.

A particular issue of assaying blood serum is that nanopore lumen 
are small and are easily blocked by proteins. Pore blockage reduces the 
barcoded probe capture rate, meaning assay times must be increased or 
repeated. To reduce the blockage of nanopores by proteins in this study, 
we added a filtration step, which removed the largest serum proteins 
(>10 kDa) but prevented simultaneous miRNA and protein detection 
in serum. In future applications, it would be preferable to develop our 
methodology further to reduce the sample processing required before 
detection whilst also reducing the unwanted pore blocking. Limiting 
proteolysis whilst preventing miRNA degradation is a key hurdle to 
overcome in the development of an assay that can detect both proteins 
and miRNAs in serum simultaneously.

The platform shows great potential for use in clinical environ-
ments, for example, to offer expansive, longitudinal disease tracking 
or early disease detection. The assay could be adapted for use with a 
variety of complex fluids, for example, saliva, urine and cerebrospi-
nal fluid. With further optimization, this strategy could significantly 
reduce testing time, assay cost and sample volume, whilst increasing 
the data available to the clinician.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41565-023-01479-z.
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Methods
Chemicals and materials
All flow cells (MinION and Flongle) were provided by ONT. All probe 
sequences were custom designed. Barcoded probes and miRNAs were 
synthesized by Integrated DNA Technologies (Supplementary Tables 1  
and 3). Proteins were obtained from the following: thrombin (Invit-
rogen, catalogue no. RP-43100); B-type natriuretic peptide (Bachem, 
catalogue no. 4095916); cardiac troponin I (Genscript Biotech, cata-
logue no. Z03320); cardiac troponin T (Ray Biotech, catalogue no. 
230-00048). Small molecules: serotonin (Sigma-Aldrich, catalogue no. 
H9523). Ampure XP magnetic beads (for purification of DNA-barcoded 
probes) were purchased from Beckman Coulter. TA ligase was acquired 
from New England Biolabs. All chemicals used for buffer preparation 
were obtained from Sigma-Aldrich, Roche or VWR Chemicals. In all 
experiments, DNA lo-bind tubes were used (Eppendorf).

Human donor blood serum
Human samples used in this research project were obtained from 
the Imperial College Healthcare Tissue Bank (ICHTB). ICHTB is sup-
ported by the National Institute for Health Research (NIHR) Biomedical 
Research Centre based at Imperial College Healthcare NHS Trust and 
Imperial College London. ICHTB is approved by Wales REC3 to release 
human material for research (22/WA/0214), and the samples for this 
project (R22016) were issued from subcollection reference number 
NHL_FN_021_028.

Venous blood was collected in red-topped vacutainers (Beckton 
Dickinson) and allowed to clot at room temperature for 15 min before 
centrifugation at 3,000g, 15 min, 4 °C. The resulting serum was then 
aliquoted into small volumes and frozen at −80 °C until use. The serum 
was filtered using a 10 kDa molecular weight cut-off spin filter (Sarto-
rius) before incubation with barcoded probes.

Barcoded probe design
The complete carrier design consists of three sections named ‘adapter’, 
‘barcode region’ and ‘target binding region’ (Fig. 1a); when fully assem-
bled, this was called a ‘barcoded probe’. The adapter section is identical 
for all probes. It is the ONT Y-adapter, which consists of (1) a leader 
(which facilitates threading into the nanopore); (2) a tether (to enhance 
the capture rate); and (3) a motor protein (to control the translocation 
of the barcoded probe through a nanopore). The adapter section is 
ligated to the 5′ end of all barcoded probes, ensuring that translocation 
events are always in the 5′ to 3′ direction. The barcode region consists 
of a polynucleotide identifier and is followed by spacer nucleotides (to 
separate the barcode and target binding regions). The target binding 
region consists of a DNA aptamer or complementary miRNA sequence, 
depending on the species of the target analyte.

Barcoded probe preparation
Each probe was incubated with ligation complementary strand in a 
molar ratio of 1:3 in nuclease-free water at room temperature for 1 h. The 
resultant mix was combined with 10 nM adapter and an equal volume of 
TA ligase master mix (New England Biolabs). The mix was centrifuged 
at 4 °C for 1 min and then incubated at room temperature for 20 min. 
Probes were purified using the solid phase reversible immobilization 
method. Ampure XP beads (Beckman Coulter) were added at 1.4 times 
the total solution volume. The beads (with probes bound) were washed 
two times with a short fragment buffer (ONT). After the washes, the 
beads were resuspended in nuclease-free water, causing the probes to 
be released. A 100 nM tether was then added to the probes along with 
sequencing buffer. The 2× sequencing buffer contained 700 mM KCl, 
50 mM HEPES, 100 mM MgCl2, 100 mM ATP, 4.4 mM EDTA (pH 8.0). 
Barcoded probes were incubated with the target analyte for 30 min at 
room temperature before loading into flow cells. The concentration 
of the barcoded probes in all experiments was 30 nM, as it was more 
sensitive than 100 nM (Supplementary Fig. 11).

Preprepared mixes of barcoded probes are resilient to multiple 
freeze–thaw cycles and long-term storage at −20 °C (Supplementary 
Fig. 12). Hybridization dynamics of miRNAs with barcoded probes were 
also investigated, revealing that incubation of 5–10 minutes is suffi-
cient to reach equilibrium for probe–analyte binding (Supplementary  
Fig. 13). This can potentially reduce the sample preparation time and 
assay variability significantly. A gel binding assay was performed to 
confirm interactions of barcoded probes and their corresponding 
miRNAs (Supplementary Fig. 14).

Sequencing experiments and data acquisition
All sequencing experiments were performed at 34 °C using either the 
MinION or Flongle sequencing device (ONT). The MinION/Flongle was 
connected through a USB 3.0 port to a PC with a minimum of 16 GB 
RAM. A membrane check was performed before each run to determine 
the integrity of the membrane and to identify how many nanopores 
were active. Before each experiment, flow cells were flushed with 2× 
500 μl (MinION) or 1× 150 μl (Flongle) sequencing buffer. The volume 
for each sequencing experiment was determined by the flow cell used: 
150 μl (MinION) or 30 μl (Flongle). After each experiment, the MinION 
flow cell was washed with the flow cell wash kit (ONT) according to the 
manufacturer’s protocol.

Data collection was performed using the proprietary software 
MinKNOW (ONT). Base calling was either performed in real time (Min-
KNOW) or offline within a custom-written MATLAB script, ‘The Nano-
pore App’, previously published by our group43.

Event analysis
Barcoded probe translocations were identified and analysed using the 
following workflow: (1) event identification; (2) event base calling; (3) 
event alignment; (4) event delay analysis.

Event identification included the tracking and then subtraction 
of the baseline signal. A cut-off threshold was then determined on the 
basis of the background noise (30–40 standard deviations above mean 
noise level). ‘Peakfinder’ function in MATLAB was used to spot events. 
Any events identified that were shorter than 100 ms were excluded at 
this stage.

Event base calling was performed with the Guppy base caller using 
the high accuracy flip-flop model (ONT).

Each base-called event was aligned against a library of barcode 
sequences. Each event was attributed to one of the library sequences on 
the basis of an alignment scoring method. We found that the accuracy 
of the Guppy base caller was much more accurate at the 5′ end of the 
barcode sequence. Further thresholds were applied to ensure that only 
true positive barcode events were retained for further analysis. These 
thresholds were: (1) sequence starts with ‘GGG’, (2) ≥15 bases aligned to 
the library sequence; (3) one mismatched base in the first ten bases; and 
(4) ≤5 mismatched bases in the entire sequence. Further information is 
in Supplementary Methods (‘Event selection pipeline’).

To distinguish between analyte-bound and unbound barcoded 
probe events, we performed analysis of each event. When an analyte is 
bound to the barcoded probe, there is a ‘quiet’ sojourn in the electrical 
signal, which persists until the analyte is dissociated from the probe, 
at which point it can complete its translocation. An event is defined 
as delayed if the moving standard deviation of the signal is less than 
the threshold of 0.003 for a period greater than 10 bins (each event 
signal is separated into a total of 75 bins). All other events are defined 
as having no delay.

Statistical tests
Where possible, a Kolmogorov–Smirnov test was performed to determine 
whether our data were normally distributed at the 5% significance level.

One-sample t-tests, were performed with n − 1 degrees of freedom 
unless otherwise stated. Details are indicated in the figure legends. No 
statistical methods were used to predetermine sample sizes.
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The experiments performed to generate the data in Fig. 4c were 
single-blinded (the analyst was blinded to sample contents). The experi-
ments performed to generate the data in Fig. 6 and Supplementary 
Figs. 8 and 9 were fully blinded to all researchers.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
 Source data are provided with this paper. Further data supporting 
the plots within this paper and other study findings are available 
in the supplementary files or by contacting the corresponding 
authors.

Code availability
The Nanopore App used to analyse the data is available at https://www.
imperial.ac.uk/people/joshua.edel or by request to the corresponding 
authors.
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