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Viral capsids can adopt various geometries, most iconically characterized 
by icosahedral or helical symmetries. Importantly, precise control over the 
size and shape of virus capsids would have advantages in the development 
of new vaccines and delivery systems. However, current tools to direct the 
assembly process in a programmable manner are exceedingly elusive. Here 
we introduce a modular approach by demonstrating DNA-origami-directed 
polymorphism of single-protein subunit capsids. We achieve control over 
the capsid shape, size and topology by employing user-defined DNA origami 
nanostructures as binding and assembly platforms, which are efficiently 
encapsulated within the capsid. Furthermore, the obtained viral capsid 
coatings can shield the encapsulated DNA origami from degradation. Our 
approach is, moreover, not limited to a single type of capsomers and can also 
be applied to RNA–DNA origami structures to pave way for next-generation 
cargo protection and targeting strategies.

Protein cages can be prepared by de novo design, by engineering of 
existing proteins or by isolating them from nature. Design examples 
of non-native systems include metal-coordinated cages1,2, and single- 
and two-component icosahedral architectures3,4. Such systems have 
proven to be effective in, for example, immunogen display and potent 
vaccine design5. Moreover, native virus capsids have unique assembly 
properties, making them popular building blocks within nanobioen-
gineering6–10. Polymorphic behaviour has been observed upon in vitro 
reassembly for several virus types11–14; however, directing the polymor-
phism in a user-defined way remains challenging15,16.

The spherical cowpea chlorotic mottle virus (CCMV, diameter 
d = 28 nm) is one of the most studied viruses. Its 180 capsid protein (CP) 
copies are arranged into 20 hexamers and 12 pentamers, resulting in 
a quasi-icosahedral T = 3 symmetry17. Its reversible assembly process 
is well characterized and highly dependent on environmental condi-
tions such as pH and ionic strength. Due to the CPs’ innate protein 

assembly pathways, reassembly results in the formation of hexagonal 
sheets, empty spheres and tubes18–21. Although control over spherical 
assemblies has been demonstrated by encapsulation of both organic 
and inorganic materials22–24, the formation of other assemblies that 
deviate from the native icosahedral or tubular symmetry cannot be 
achieved in a modular way.

In this article we utilize DNA origami25 templates to obtain precise 
control of the virus capsid assembly’s size and shape. To this end, a long, 
single-stranded DNA scaffold strand is assembled into well-defined 
two- and three-dimensional structures26,27 through programmable 
hybridization with short, single-stranded staple sequences25,28. First 
we study directing the assembly of CCMV CPs using a six-helix bundle 
(6HB) DNA origami (Fig. 1). 6HB fits inside the previously described, 
hollow tubes18 (considering also the thickness of the CP layer17), and 
additionally, it closely mimicks the packaging of DNA observed in 
naturally occurring viral systems29. By optimizing the ratio between 
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CCMV (davg = 26.8 ± 1.0 nm) (Fig. 1b,c) with negative-stain transmission 
electron microscopy (TEM), the complexation of isolated CPs and 6HB 
was performed at physiological conditions (pH 7.3, 150 mM NaCl) using 
the CPs in excess. The excess, ε, is defined as the molar ratio between the 
protein monomer and the DNA origami (cCP/corigami). The complexation 
was monitored using an electrophoretic mobility shift assay (EMSA) 
based on agarose gel electrophoresis (AGE). With increasing ε, a gradual 
decrease in the intensity of the 6HB leading band is observed, while 
another band with lower electrophoretic mobility appears (Fig. 1d), 
corresponding to the well-known fast assembly behaviour of CCMV 
CPs with low cooperativity30. The decrease in electrophoretic mobility, 
stagnating from approximately ε = 2k, with k standing for the multi-
plier 1,000, that is, ε = 2,000, indicates a notably less negative surface 
charge of the origami–CP complex. Negative-stain TEM images and 
small-angle X-ray scattering (SAXS; Supplementary Note 2 and Sup-
plementary Fig. 2a) for samples complexed at ε = 2k (6HB-2k) reveal 
6HB complexes with increased diameter due to a highly ordered protein 
shell (Fig. 1e, bottom), which develops from nucleation sites along the 
origami structure (ε < 2k). When using ε > 2k, assembly of free CPs on 
top of the first protein layer is observed, being particularly pronounced 
at ε = 10k (Fig. 1f). Statistical analysis of the diameter of the complexed 
structures (Fig. 1g) shows a clear change from davg = 6.1 ± 0.6 nm (plain 
6HB, blue) to 18.1 ± 0.9 nm (6HB-2k, single-layer coating, grey) and 
further to 29.1 ± 2.5 nm (6HB-10k, double-layer coating, green). 6HB 
is rather flexible31, which might contribute to both partially collapsed 
origami structures upon initial electrostatic binding of the CP and to the 

DNA origami and CPs, complexes with multiple protein layers were 
obtained and further characterized using single-particle cryo-electron 
microscopy (cryo-EM) reconstruction. This approach allows not only 
the encapsulation of non-linear, non-tubular and RNA–DNA hybrid 
structures, but is also applicable to other virus species, such as polyoma 
viruses. Furthermore, it presents a versatile technique for protecting 
DNA against nuclease degradation, thus making it attractive for vaccine 
and nucleic acid delivery vector development.

Forming CP–DNA origami complexes
We have used five different DNA origami structures to investigate the 
properties and possible geometric limitations that govern the assembly 
of CCMV CPs. 6HB and 24HB are cylindrical structures with diameters 
(d) of 6 nm and 14 nm, respectively, whereas the 13-helix ring (13HR) is a 
toroidal structure, the 60HB is a brick-like object and the nanocapsule is 
a stimuli-responsive object (Supplementary Note 1). The complexation 
process is driven by protein–protein interactions and by electrostatic 
interactions between the negatively charged phosphate backbone of 
the DNA origami and the positively charged amino acid (aa) residues 
(+9) in the 26-residue arginine-rich N-terminal region of the protein (190 
aa, ~20 kDa) (Fig. 1a). The complexation process was found not to be 
limited to a single protein layer (grey), but rather the positively charged 
CP residues interacted also with negatively charged patches on the CPs’ 
surface, resulting in the nucleation of a second protein layer (green).

After characterizing the starting materials (dimensions are given 
as average (avg) ± s.d. throughout), 6HB (davg = 6.1 ± 0.6 nm) and intact 
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Fig. 1 | Formation of capsid-coated DNA origami structures. a, CPs are isolated 
from native CCMV (left) and complexed with different DNA origami shapes, 
resulting in a coating (middle) whose properties are determined by the origami 
structure. The assembly is driven by electrostatic (positively charged amino 
acids in the N-terminus marked in red) and protein–protein interactions (right). 
A second protein layer can develop on top of the first one due to electrostatic 
interactions between the N-terminus and the negatively charged parts of the CP 

surface. b, Negative-stain TEM image of plain 6HB structures. c, Negative-stain 
TEM image of native CCMV particles. d, EMSA shows electrophoretic mobility 
decrease of 6HB upon complexation with CPs when increasing ε. e, Development 
of a single layer of CPs on the 6HB origami template using ε ≤ 2k. f, Subsequent 
development of a second CP layer on top of e. g, Observed size distributions (in 
diameter) for plain 6HB (blue) and 6HB complexed at ε = 2k (grey) or at ε = 10k 
(green). The image width of all TEM images corresponds to 500 nm.
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proneness to structural defects, including loops, bends and incomplete 
layers, which might also explain the wider size distribution for 6HB-10k 
(Supplementary Note 3).

In general, CCMV assembly has been described as being initiated 
by CP dimers forming pentamers. Adding dimeric subunits results in 
pentameric and hexameric capsomeres with curvature32,33. Nucleation32 
followed by elongation34 has been suggested for larger icosahedral 
assemblies. However, in the absence of RNA, assembly based on dimers 
forming hexameric morphological units as nucleation sites has been 
proposed17. For low ionic strengths, implying stronger protein–DNA 
compared with protein–protein interactions, en masse mechanisms 
have been suggested for the assembly. We expect our protein shells 
to nucleate into a hexameric lattice. Previous work on the assembly 
of brome mosaic virus (BMV, closely related to CCMV) on spherocy-
lindrical substrates reported a dependency between the diameter of 
the rod and the preferred location of nucleation along the rod13,35. For 
6HB-500, although the length/progression of the coating is hetero-
geneous, nucleation is mainly observed around the middle part of the 
rod. In contrast, when decreasing the aspect ratio, nucleation is also 
observed on the spherical cap regions (Supplementary Note 4). Due 
to the lack of nucleation of a second protein layer at this early stage, 
we hypothesize that a (almost) fully developed first protein layer is 
required to facilitate the formation of the second one. Although the 
CPs’ surface has negatively charged patches, it seems to be more favour-
able for the CPs to interact with the highly negatively charged surface  
of the origami.

The geometric properties of the observed complexed structures 
with respect to the outer diameter of the tubes are consistent with 
previously reported tubes18,21,36,37. Whereas controllability over the 
assemblies’ length was previously low36,38, here, in contrast, a narrow 

length distribution of the complexed structures is obtained, suggesting 
the encapsulation of exactly one 6HB origami per complexed structure.

Cryo-electron microscopy reconstruction
To confirm the encapsulation of DNA and for detailed structural char-
acterization, single-particle reconstruction was performed based on 
cryo-electron microscopy (cryo-EM) (Fig. 2a,d and Supplementary 
Notes 5 and 6). Two-dimensional (2D) classification of particles picked 
along the filaments (Fig. 2b,e) and 3D refinement of ab initio 3D models, 
obtained from the recorded images only, results in helical structures 
with 4.3 Å resolution (Fig. 2c, left, and Supplementary Fig. 6a) for the 
first protein layer and 8 Å resolution (Fig. 2f and Supplementary Fig. 
6c,d) for the second protein layer. The protein tubes are assembled 
of hexamers (Fig. 2c, top right), similar to tubes formed by in vitro 
assembled human immunodeficiency virus (HIV)12. For the atomic 
model (Fig. 2c, bottom right), CCMV CPs (PDB:1cwp) were flexibly 
fitted to the cryo-EM density maps.

The density in the lumen of the protein tubes corresponds to 
the encapsulated DNA origami (Fig. 2g). Its negative charge is evenly 
distributed (Fig. 2h, left). N-termini facing the origami create a posi-
tive electrostatic potential surface for the inner surface of the protein 
tube (Fig. 2h, bottom right). For the outer tube surface, in contrast, 
the negative electrostatic potential is predominant (Fig. 2h, top right, 
and Supplementary Fig. 7d), hence allowing the formation of protein 
multilayer complexes. We were not able to detect a specific physical 
contact point between the protein layers, or between DNA and protein, 
suggesting that unspecific electrostatic and protein–protein interac-
tions were the driving force for the assembly.

Analysis of the protein layers shows a clear difference in the helical 
symmetry (Fig. 2i). Whereas the first layer is characterized by a 1-start 
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Fig. 2 | Single-particle reconstruction of complexed 6HB structures using 
cryo-EM. a, Representative micrograph image of 6HB coated with a single 
protein layer (6HB-2k). b, Selected 2D class averages for 6HB-2k. c, Cryo-EM 
density of the tube (left) and a selected hexamer (top right). In an atomic model 
(bottom right) the CP (PDB:1cwp) was flexibly fitted to the EM density. d, 
Representative image of the double-layered filaments formed by 6HB and the 
CPs (6HB-10k). e, Selected 2D class averages for 6HB-10k. f, Cryo-EM density of 
the outer layer of a double-layered tube. g, Cross section and top view of 6HB-2k 

complexes showing the DNA origami in blue. h, Electrostatic potential surface 
suggests a negative potential for both the DNA origami (left) and the outward-
facing protein surface of the first layer (top right), whereas the DNA adjacent 
surface of the protein shell (bottom right) possesses a positive potential. i, A 3D 
model of the assembled double-layer structure shows the different symmetry 
of the two layers assembling on 6HB origami (1). While the inner layer (2) has a 
1-start helix symmetry, the outer layer (3) is defined by a 3-start helix.
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helix with a turn of 63.8° and a rise of 15.4 Å (Supplementary Fig. 7a), 
the second layer has a 3-start helical symmetry with a turn of 38.8° and 
a 29.6 Å rise (Supplementary Fig. 7c,d).

Apart from the increased diameter of the tubular, complexed 
structures, the helical symmetry is in line with the properties of empty 
CCMV tubes observed by Bancroft et al.18. CCMV is known to adopt two 
distinct conformational states depending on the pH of the surround-
ing solution18. Upon increase of the pH from acidic to neutral and in 
the absence of metal ions, the capsid transforms from the native state 
into a swollen state. During this transformation, the morphology of 
both hexameric and pentameric units stays unchanged; however, the 
distance between the units increases by ~5 Å, most probably due to 
electrostatic repulsion17. The cryo-EM densities of CPs encapsulating 
6HB (Fig. 2 and Supplementary Fig. 7) clearly show large holes between 
the hexameric units, resembling the swollen state, which is expected 
according to the solution conditions used.

The cap that closes the first CP layer around the origami  
(Fig. 3 and Supplementary Note 7) is found to consist of six pentamers 
and one hexamer, which create its curvature. Hexamer H0 (Fig. 3b,c, 
black) still follows the helical symmetry, whereas hexamer H1 (blue) 
is tilted inwards, most probably to be in contact with the pentamers. 
The pentamers (P1–P5) are arranged along the tubular axis and are 
responsible for creating the main curvature of the cap. Finally, the cap 
is sealed with a sixth pentamer (P6, yellow). Since the diameter of the 
first protein layer matches with T = 1 symmetry, and following from 
the helical geometry, six pentamers per tube end are expected to close  
the hexameric lattice, which is in line with our volume data.

Evaluating the template versatility and 
protection
Our results show that 6HB is able to direct the assembly of CCMV CPs. 
Its diameter matches the size of the central channel of empty tubes17,18,36, 
and it simultaneously restricts the growth of long fibres. Furthermore, 
for other DNA origami structures tested (Fig. 4a for 24HB (top) and 
60HB (bottom), and Supplementary Note 8 and Supplementary Fig. 9  
for 13HR) the decrease in electrophoretic mobility confirms the 

existence of electrostatic interactions between the origami and CPs. 
Interestingly, for 60HB, complexation with CPs reveals two distinct 
states, whereas the tubular (6HB, 24HB) origami structures show a 
more gradual electrophoretic mobility shift in the gel upon complexa-
tion. It is notable that the shift occurs at similar ε values, independent 
of the origami structure, which is in line with a ‘magic ratio’ reported 
for the encapsulation of ssRNA22. The complete formation of a single 
CP layer on 24HB is observed at ε = 2.5k (Fig. 4b, middle, and Supple-
mentary Fig. 5c), whereas a second CP layer requires ε = 10k (Fig. 4b, 
bottom, and Supplementary Fig. 5d). Compared to complexed 6HB, 
the diameter of complexed 24HB is slightly increased (21.9 ± 1.6 nm 
versus 18.1 ± 0.9 nm) and the helical symmetry (24HB-2.5k, single layer; 
Fig. 4c and Supplementary Figs. 6b and 7b) of the hexamers arranged 
in a 1-start helix differs (48.1° turn, 23.5 Å rise). Note that, in the cross 
section the highlighted 24HB origami structure (blue) is represented 
by two DNA layers.

The homogeneity of the complexed 24HB structures was con-
firmed by SAXS (Fig. 4d and Supplementary Note 9). This shows distinct 
curves for CPs only (dark blue) and 24HB (green), while a clear change 
in patterns is observed for complexed 24HB (24HB-2.5k, blue circles). 
A core–shell cylinder is chosen to represent the complexed structure 
best in a geometric model (red). The obtained radius of 6.6 nm for the 
core and a shell thickness of 5.1 nm results in a total dSAXS = 23.4 nm, 
which is in agreement with the TEM analysis and the single-particle 
reconstruction of 24HB-2.5k.

Due to the low aspect ratio of 60HB (Fig. 4e) the formation of 
spherical shells rather than tubes might be expected because 60HB’s 
shorter edge corresponds to the outer diameter of the observed tubes. 
The coating of 60HB is found to develop from the square-shaped face of 
the origami structure, but fully complexed structures are only observed 
at large ε, with a clear trend toward smoothening of the edges of the 
complexes (Supplementary Note 10 and Supplementary Fig. 11a,b). A 
fully developed single-layer coating for 13HR similarly requires large 
ε (Fig. 4f and Supplementary Fig. 11c,d) although its cross-sectional 
size is between that of 6HB and 24HB, suggesting that the negative 
curvature is not well tolerated by the CPs. Following the tube formation 
along the template, clear kinks are seen, resulting in an appearance of 
the complexed structures predominantly as triangles, squares and 
pentagons (Fig. 4g). This implies that a series of short linear stretches 
deforming the template is more favourable for the assembly formation 
than a negative curvature.

Having established a system that allows precise control over the 
dimensions of the assembled structures (Supplementary Note 11 and 
Supplementary Fig. 12i), we aimed to further exploit the properties 
of DNA origami toward a more functional system. The nanocapsule, a 
dynamic, stimuli-responsive DNA origami, which can change its con-
figuration from open to closed by decreasing the pH of the surrounding 
solution from 8 to 6 (ref. 39) (Fig. 4h–j) results in coated structures at 
ε ≥ 750 (Fig. 4i,j, Supplementary Note 12 and Supplementary Fig. 13c,d) 
at pH 6 (nanocapsule closed). An increase in pH after complexation 
leads to less aggregation, noticeable by an increase in the intensity of 
the leading band in the agarose gel, with a profile similar to observa-
tions when coating is performed at pH 8 (Supplementary Fig. 13a,b). 
The coating can be removed by the addition of heparin as a competi-
tive agent, and adjusting the pH would return the nanocapsule to its 
open state. Additionally, since each strand of a DNA origami structure 
is addressable, functional units can be precisely positioned on the ori-
gami structure. We demonstrated this with DNA-coated gold nanopar-
ticles (AuNPs) anchored on the 6HB structure (Fig. 4k, Supplementary 
Note 13 and Supplementary Fig. 14). As a result of the complexation, 
both the DNA origami and the AuNPs were coated, showing the forma-
tion of dumbbell-like structures with 6HB precisely controlling the 
distance between the spherical particles.

In addition, it is well known that DNA origami structures are 
susceptible to DNase I degradation40. Several strategies have been 
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developed to circumvent the degradation, including the application of 
different coatings41. Complexation with CCMV CPs is found to enhance 
the stability of both 6HB and 24HB (Fig. 4l) until 50 Kunitz units (KU) 
ml−1 of DNase I (Supplementary Note 14 and Supplementary Fig. 15a). 
The complexed structures were disassembled after DNase I treatment 
with heparin (Supplementary Fig. 15b,c), exposing the plain structures 
to highly active DNase I for a short time, which is, however, long enough 
to attack the 6HB structure. The applied coating is highly efficient and 
has the ability to protect the structures also when incubated in cell 
medium supplemented with a final concentration of 5–10% fetal bovine 
serum (Supplementary Fig. 15d).

Expanding the material toolbox
The DNA origami templates presented here are all based on the com-
mon M13mp18 scaffold, but for some applications, DNA nanostructure 
functionality can be further increased through the rational design of 
their scaffold sequence. Recently, several RNA-based nanostructures, 

for example, RNA-scaffolded RNA–DNA hybrid origami structures, and 
their use in therapeutic applications have been reported42–45. Here, we 
have designed a 6HB RNA–DNA hybrid origami based on an RNA scaf-
fold (RNA-6HB; Fig. 5a and Supplementary Note 15). Successful folding 
of the structure, including the integration of fluorophores (ATTO590), 
is suggested by AGE (Fig. 5b and Supplementary Fig. 16a) and by both 
atomic force microscopy (AFM) and TEM showing distinct structures 
with a length of lavg = 40.3 ± 4.0 nm (Fig. 5c,d). Complexation with CPs 
results in decreased electrophoretic mobility (Fig. 5e) and a change in 
both length and diameter, from davg = 6.3 ± 1.0 nm for the plain struc-
tures to davg = 18.3 ± 1.2 nm for coated structures (ε = 500) (Fig. 5f,g 
and Supplementary Fig. 16b,c), similar to the increase observed for 
complexed 6HB DNA origami structures.

The versatility of our approach is evaluated by testing three 
different CPs, namely the major CPs, VP1s, of norovirus GII.4 (NoV;  
Fig. 5h, top), simian virus 40 (SV40; Fig. 5i, top) and murine pol-
yoma virus (MPyV; Fig. 5j, top). Whereas NoV is known for its 
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decoating. j, Negative-stain TEM images of the plain nanocapsule when open, 
closed and coated (coating applied at pH 6, ε = 750). The image dimensions 
correspond to 100 nm × 100 nm. k, Application of protein coating on AuNP-
functionalized 6HB structures. The image width corresponds to 400 nm. l, 
Stability of 6HB and 24HB upon DNase I treatment. For both structures, the 
digestion of the coated DNA origami (single (middle) or double protein layer 
(right)) is slower than for the plain structures (left). The coating has been 
removed by heparin before AGE to avoid retention in the wells.
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quasi-icosahedral T = 3 symmetry (180 VP1 copies)46, SV40 and MPyV 
adopt a T = 7d symmetry47,48. Notably, a polymorphic behaviour has 
been reported for all virus species used. For templating of NoV VP1 
proteins, 6HB was mixed with virus-like particles (VLPs) and trans-
ferred into alkaline pH. However, the tested conditions did not show a 
notable electrophoretic mobility shift (Supplementary Fig. 17c). TEM 
reveals mainly plain 6HB origami, while origami templated protein 
structures could not be detected (Fig. 5h, bottom, and Supplemen-
tary Fig. 17d–f), most probably due to the lack of a positively charged 
N-terminal RNA binding domain on VP1 (Supplementary Note 16). In 
comparison, complexation of 24HB with SV40 capsomers, obtained 
after VLP disassembly, results in a highly ordered coating mainly 
consisting of pentameric subunits (24HB-SV40-5k; Fig. 5i, bottom). 
Packaging of nearly spherical DNA origami in SV40 VLPs49 and the 
assembly of VP1 into elongated structures in vitro has previously been 
reported50–52. In comparison to empty tubes, an increase in the tube 
diameter (davg = 26.3 ± 1.9 nm) is observed upon templating of the 
assembly on 24HB, with the tube length being partly heterogeneous 
(Supplementary Note 17). A similar, pentamer-based coating behav-
iour is observed for the second polyoma virus, MPyV (Supplementary 
Note 18). Polyoma viruses have not only been found to reassemble 
into pentamer-based tubule-like53,54 and spherical particles with both 

icosahedral and octahedral symmetry53 but also to interact with 
with foreign DNA55. Using DNA origami, the fully coated structures 
(ε ≥ 1.25k for both origami structures tested) display a narrow length 
and diameter distribution. The diameters of complexed 6HB and 24HB 
structures increase to davg = 21.5 ± 1.6 nm and davg = 27.2 ± 2.0 nm, respec-
tively, while the lengths were found to be lavg = 383.0 ± 12.3 nm and  
lavg = 121.9 ± 3.1 nm.

Conclusion
We have developed a strategy to direct the assembly of virus capsids at 
physiological conditions in a precise and programmable manner. By 
employing versatile DNA origami as templates, precise control over the 
size and shape of the formed assemblies can be achieved. The complexa-
tion is based on electrostatic interactions, which, due to the properties 
of the CPs, leads to the formation of one or two protein layers depend-
ing on the CP concentration used. It furthermore enables fine-tuning 
of the control over the assembly by altering the salt conditions or by 
engineering the CP–DNA interactions. Hexamers are the predominant 
building units of the CCMV CP-based protein layers, which were found 
to substantially differ in their symmetry depending on the template. 
Although protein coatings developed successfully on all tested origami 
shapes, a preference toward tubular origami structures was observed, 
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hence allowing even the encapsulation of DNA origami with negative 
curvature. Moreover, we have demonstrated that the applicability 
of templating is neither limited to DNA origami but expandable to 
RNA-scaffolded origami, nor exclusive to CCMV CPs, resulting in assem-
blies built from other virus species.

Additionally, our approach does not only enhance the stability of 
DNA origami against nuclease digestion, but also enables the use of DNA 
origami as a highly functionalizable platform. The high addressability 
of DNA origami, which was demonstrated with AuNPs, can be leveraged 
in precise attachment of a variety of cargo/targeting molecules by 
hybridization or intercalation. In combination with functionalization 
of the protein components, the resulting multipurpose system could 
be implemented in various fields ranging from DNA-origami-based 3D 
display of ligands56,57 to gene delivery58.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41565-023-01443-x.
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Methods
DNA origami folding and purification
The DNA origami structures (6HB, 24HB, 60HB, 13HR and nanocapsule) 
were folded in a one-pot reaction by gradually decreasing the tem-
perature using a Proflex 3 × 32-well PCR system (Thermo Fisher). The 
scaffold strands (p7249, p8064 and p7560 variants of single-stranded 
M13mp18) were purchased from Tilibit Nanosystems and the staple 
strands from Integrated DNA Technologies. To ensure high folding 
yields of DNA origami, structure-specific optimized conditions regard-
ing both the annealing procedures and the buffer choice (‘folding 
buffer’, FOB) are used (Supplementary Note 20).

Buffer exchange for DNA origami
The purified DNA origami structures were transferred into 6.5 mM 
4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES) buffer 
supplemented with 2 mM NaOH (HEPES-NaOH, pH 6.5) before com-
plexation with CCMV CPs. The buffer exchange was performed by 
spin-filtration59 using 100 kDa molecular weight cut-off (MWCO) cen-
trifugal filters (Amicon), which were washed before use by centrifuging 
with 400 μl of HEPES-NaOH buffer for 5 min at 14,000g. Subsequently, 
equal volumes of DNA origami solution and HEPES-NaOH buffer were 
added into the filter device and the centrifugation was continued for 
10 min at 6,000g. A volume of HEPES-NaOH equal to 2.09× the initial 
volume of origami solution was then added, and the centrifugation 
step was repeated. The sample was collected by inverting the filter and 
centrifuging for 2.5 min at 1,000g.

Isolation of CCMV CPs
The CPs were isolated from intact CCMV (for virus preparation, see 
Supplementary Note 21). Briefly, the virus particles were dialysed 
overnight against 50 mM Tris–HCl, 500 mM CaCl2 buffer, pH 7.5 sup-
plemented with 1 mM dithiothreitol (DTT) using Slize-A-Lyzer Mini 
Dialysis cups (3.5 kDa MWCO, Thermo Scientific). The RNA was pelleted 
in a centrifugation step at 4 °C using 21,100g for 6 h, and the recovered 
supernatant was dialysed overnight against ‘clean buffer’ that contains 
50 mM Tris–HCl, 150 mM NaCl at pH 7.5 supplemented with 1 mM DTT 
(adapted from ref. 60). The concentration of the proteins was deter-
mined based on their absorbance at 280 nm (extinction coefficient, 
23,590 M−1 cm−1) using a BioTek Eon Microplate Spectrophotometer 
(2 μl sample, Take3 plate).

AGE
AGE was used to study the binding interaction between the proteins 
and the origami structures by monitoring the shift in electrophoretic 
mobility. Furthermore, the intactness of the origami structures after 
folding and purification, and during DNase I digestion, was analysed 
by gel electrophoresis. To this end, samples (volumes ranging from 10 
to 32 μl) supplemented with 6× gel loading dye (40% sucrose without 
dye for samples from digestion studies) were run in a 2% (w/v) agarose 
gel (1 × Tris–acetate–ethylenediaminetetraacetic acid (TAE) buffer, 11 
mM MgCl2) for 45 min at 90 V in 1 × TAE buffer supplemented with 11 mM 
MgCl2. For staining, ethidium bromide (EtBr) at a final concentration 
of 0.46 μg ml−1 was used and the DNA was visualized under ultraviolet 
light using a GelDoc XR+ system (Bio-Rad).

Complexation of DNA origami and CCMV CPs
The complexation between CPs and DNA origami was performed at 
a final origami concentration of 4 nM (10 μl samples). The origami 
was added in a 1:1 volume ratio to the protein solution that had been 
diluted in the ‘clean buffer’. Depending on the required protein excess, 
ε, which describes the molar ratio between CP to DNA origami, pro-
tein solutions ranging from 0 to 60 μM (corresponding to ε = 0–15k) 
were prepared. The NaCl concentration was adjusted to 150 mM, 
resulting in a complexation buffer containing 3.25 mM HEPES-NaOH, 
25 mM Tris–HCl, 150 mM NaCl and 0.5 mM DTT. The complexation 

was performed at 4 °C for at least 1 h and subsequently analysed using  
AGE and TEM.

DNase I digestion assays
To study the protection effect of the CP coating against degradation of 
the origami structures by DNase I, 2 μl of DNase I stock (ranging from 
0 to 500 KU ml−1) was added to 16 μl of the sample. Additionally, CaCl2 
and MgCl2 concentrations were adjusted, resulting in a final reaction 
volume of 20 μl containing 3.2 nM DNA origami, 2.6 mM HEPES-NaOH, 
20 mM Tris–HCl, 120 mM NaCl, 0.4 mM DTT, 1 mM CaCl2 and 5 mM 
MgCl2. The samples are incubated at 37 °C for 15 min (6HB) and 60 min 
(24HB). Before analysing the outcome by AGE, samples complexed 
with CPs were disassembled using heparin sodium salt as a competitive 
binding agent (final concentrations of 1.5 μM for 6HB-2k and 24HB-2.5k 
and 82 μM for 6HB-10k and 24HB-10k; Supplementary Note 14).

RNA–DNA origami folding and purification
For the RNA–DNA hybrid origami (RNA-6HB), EGFP mRNA (CleanCap 
EGFP mRNA, TriLink Bio Technologies, L-7601) was used as the scaffold. 
In a one-pot reaction, the 996-nt-long mRNA scaffold was thermally 
annealed with 29 staple strands (purchased from Integrated DNA 
Technologies, see Supplementary Note 22) into a short 6HB structure 
using a Proflex 3 × 32-well PCR system (Thermo Fisher). The structure 
is designed to contain two scaffold crossovers and has a helical pitch 
of 11 bp per turn. For the folding reaction, the mRNA and the staples 
were diluted into 1 × FOB containing 1 × TAE pH 8.4, 5 mM MgCl2 and 
1 mM NaCl reaching final concentrations of 50 nM and 500 nM, respec-
tively. The reaction mixture was incubated at 55 °C for 15 min61 and 
cooled down by placing it on ice for at least 10 min before storage at 
4 °C. To validate the folding, four staple strands were exchanged with 
staple strands containing a 3′ overhang (labelled with F, Supplementary  
Table 2). A fluorophore-containing attachment strand (ATTO590, 
Integrated DNA Technologies), which was added to the folding mix-
ture in 10× excess per attachment site, can then be integrated into the 
structure by hybridization with the staple overhangs.

The folded structures were purified from excess staple strands 
by spin-filtration. To this end, the filter (100 kDa MWCO, Amicon) was 
washed with 400 μl of 1 × FOB by centrifugation at 14,000g for 5 min, 
followed by two-times addition of 40 μl RNA-6HB together with 40 μl 
of 1 × FOB. After a centrifugation step at 6,000g for 10 min, 80 μl of 
1 × FOB was added and the centrifugation continued (6,000g, 10 min). 
This washing step was repeated in total three times before the sample 
was recovered by inverting the filter into a clean tube (1,000g, 2.5 min). 
The concentration was determined by measuring the absorbance at 
260 nm (extinction coefficient, 1.29 × 107 M−1 cm−1), and the successful 
folding was determined by AGE (3.5 % (w/v) gels, visualization under 
ultraviolet light (EtBr channel) and red light (A647 channel), ChemiDoc 
MP system, Bio-Rad), AFM and TEM.

Complexation of RNA-6HB origami and CCMV CPs
For the complexation, purified RNA-6HB origami in 1 × FOB was mixed 
with CCMV capsids in ‘clean buffer’ in a 1:1 ratio at a final hybrid origami 
concentration of 7.5 nM. This results in a complexation buffer contain-
ing 45 mM Tris, 75.5 mM NaCl, 10 mM acetic acid, 2.5 mM MgCl2, 0.5 mM 
DTT and 0.5 mM EDTA. The samples were incubated at 4 °C for at least 
1 h before analysis with AGE and TEM.

Complexation of DNA origami and NoV CPs
NoVLPs were prepared as reported by Lampinen et al.62 and stored in 
1 × phosphate-buffered saline (PBS, 137 mM NaCl, 2.7 mM KCl, 10 mM 
Na2HPO4 and 1.8 mM KH2PO4, pH 7.4); however, here SpyTag003  
(ref. 63) has been fused to the C-terminus of the VP1 from the NoV 
strain Hu/GII.4/Sydney/NSW0514/2012/AU. The particles were qual-
ity controlled with dynamic light scattering for particle formation, 
sodium dodecyl sulfate polyacrylamide gel electrophoresis for protein 
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purity and the residual dsDNA was measured. For the complexation 
with DNA origami, DNA origami was present in the sample during 
both disassembly and reassembly of the VLPs. To this end, the origami 
structures were transferred into deionized water using spin-filtration 
(as described above). The DNA origami was mixed with the NoVLPs at 
different concentrations in a 1:4 (v/v) ratio, resulting in a final origami 
concentration of 6 nM (30 μl samples). The samples were transferred 
into 3.5 kDa MWCO dialysis cups (Slize-A-Lyzer, Thermo Scientific) 
and dialysed overnight at 4 °C against 50 mM Tris–HCl, pH 8.9. For 
reassembly, the samples were, in a second step, dialysed overnight 
at 4 °C against 100 mM sodium phosphate buffer, pH 6.0, similarly as 
reported by White et al.64 The complexation during disassembly and 
assembly of the NoVLPs was analysed by AGE and TEM.

Complexation of DNA origami and SV40 CPs
The SV40 major CP VP1 (abcam, ab74565) was disassembled and reas-
sembled (adapted from ref. 50) by dialysing the assembled VLPs in PBS 
against 20 mM Tris, 2 mM DTT, 5 mM EDTA and 50 mM NaCl, pH 8.9 for 
2 h at 4 °C (3.5 kDa MWCO, Slize-A-Lyzer, Thermo Scientific), after which 
the EDTA concentration was decreased by an additional dialysis step at 
4 °C for 2 h against 20 mM Tris, 2 mM DTT, 2 mM EDTA and 50 mM NaCl, 
pH 8.9. The concentration was determined based on the absorbance at 
280 nm (VP1 extinction coefficient, 32,890 M−1 cm−1). The DNA origami 
was transferred into 100 mM HEPES buffer, pH 7.2, supplemented with 
125 mM NaCl by spin-filtration (as described above). The proteins were 
mixed with the DNA origami in 1:1 (v/v) ratio to reach final concentra-
tions of 0–20 μM and 2 nM, respectively, and the samples were incu-
bated for 24 h at room temperature before analysis using AGE and TEM.

Complexation of DNA origami and MPyV CPs
For the complexation of VP1 capsomers (for recombinant expression 
and purification, see Supplementary Note 23) and DNA origami, the 
origami structures were first transferred into 40 mM Tris buffer, pH 8.0, 
supplemented with 20 mM acetic acid, 2 mM EDTA and 12 mM MgCl2 
using spin-filtration (see above). Depending on the desired excess of 
proteins, ε, the capsomers were diluted into ‘storage buffer’, contain-
ing 40 mM Tris, 200 mM NaCl, 1 mM EDTA, 5% (v/v) glycerol and 5 mM 
DTT, pH 8.0. For the complexation, VP1 capsomers were diluted in a 
ratio of 1:20 in the origami solution, resulting in a final origami con-
centration of 0.75 nM (30 μl samples) and a complexation buffer con-
taining 40 mM Tris, 19 mM acetic acid, 1.95 mM EDTA, 11.4 mM MgCl2, 
10 mM NaCl, 0.25% (v/v) glycerol and 0.25 mM DTT, pH 8. The compl-
exation reaction was incubated at 4 °C overnight before analysis with  
AGE and TEM.

AFM
A 20 μl droplet of 10 nM RNA-6HB origami solution (MgCl2 concen-
tration adjusted to 12.5 mM) was deposited on a freshly cleaved mica 
substrate (Electron Microscopy Sciences) for 1 min, followed by three 
washing steps with 100 μl deionized water that was immediately blot-
ted away. The sample was dried under a steady nitrogen stream and 
imaged immediately after sample preparation. AFM images were 
acquired in air using ScanAsyst in Air Mode together with ScanAsyst-Air 
probes (Bruker) on a Dimension Icon AFM (Bruker). Image processing 
was performed in NanoScope Analysis v.1.90 (Bruker).

TEM
Plain DNA origami samples (4 nM) were prepared by incubation of a 3 μl 
droplet for 3 min on a plasma cleaned (20 s oxygen plasma flash, Gatan 
Solarus) Formvar carbon-coated copper grid (FCF400Cu, Electron 
Microscopy Sciences), which was subsequently blotted against filter 
paper and negative stained. For CCMV-CP-complexed samples (4 nM 
DNA origami), a 3 μl droplet was deposited on the grid for 1.5 min. After 
blotting against filter paper, the grid was immersed in a 10 μl droplet of 
complexation buffer (3.25 mM HEPES-NaOH, 25 mM Tris–HCl, 150 mM 

NaCl, 0.5 mM DTT) for 5 s. For samples with DNA origami concentra-
tions ≤2 nM (for example, complexation with SV40, MPyV), and for 
samples containing RNA-6HB (7.5 nM origami concentration), the 
droplet size was increased to 5 μl and the incubation time extended to 
5 min. Negative staining65 was performed by first immersing the grid 
in a 5 μl droplet of aqueous 2% (w/v) uranyl formate solution (supple-
mented with 25 mM NaOH for pH adjustment), which was immediately 
blotted away. This step was followed by an immersion in a 20 μl droplet, 
which was incubated on the grid for 45 s. After the final blotting step, 
the samples were left to dry for at least 20 min before imaging was 
performed on a FEI Tecnai 12 Bio-Twin microscope at an acceleration 
voltage of 120 V.

Cryo-EM
The samples for cryo-EM were prepared using a vitrification apparatus 
(Vitrobot, Thermo Fisher Scientific). The origami concentrations in 
the complexed samples were 90 nM for 6HB-2k, 84 nM for 24HB-2.5k, 
18 nM for 6HB-10k and 21 nM for 24HB-10k, resulting in total CP con-
centrations of 180 μM and 210 μM for complexed 6HB and 24HB sam-
ples, respectively. A 3 μl aliquot of the complexed origami sample was 
deposited on a plasma-cleaned (50 s, Harrick Plasma PDC-002-EC 
instrument) holey carbon-coated grid (copper 200 mesh R1.2/1.3, 
Quantifoil). After a 1 min incubation, excess liquid was blotted for 10 s 
at 100% relative humidity and 6 °C, followed by plunging the grid into 
liquid ethane. The grids were stored in liquid nitrogen. Data were col-
lected at liquid nitrogen temperature in a Talos Arctica transmission 
electron microscope (Thermo Fisher Scientific) operated at 200 kV, 
using a Falcon III direct electron detector (Thermo Fisher Scientific). A 
magnification of 150,000× was used, resulting in a calibrated pixel size 
of 0.96 Å. The data collection parameters are listed in Supplementary 
Table 4 (Supplementary Note 24).

Single-particle reconstruction
Cryo-EM data were processed using CryoSPARC 3.3.2 (Structura 
Biotechnology) unless stated otherwise. Contrast transfer function 
parameters were estimated using CTFFIND4 (ref. 66). Segments along 
filaments were defined using the Filament Tracer function. Helical 
symmetry parameters were estimated initially from 2D class averages 
using Python-based Helix Indexer67. The structure and helical symmetry 
parameters were refined using Helix Refine function and non-uniform 
refinement on motion-corrected helix segments. To determine the 
helical symmetry parameters of the 6HB-10k outer layer, a second 2D 
classification run was performed after subtracting the contribution 
of the inner layer using the Particle Subtraction function. The Helix 
Refine was run on the subset of particles that showed a clear second 
layer, using the determined symmetry parameters as initial estimates. 
Reconstructions were sharpened by applying an ad hoc B-factor of 
−300 Å2. The reconstructions were averaged in real space by imposing 
the helical symmetry parameters on the central, most ordered part of 
the map (50% of the volume) in Bsoft68.

For modelling the structure of the capsomer, CP monomer 
(PDB:1cwp) was fitted in the 6HB-2k reconstruction in the six posi-
tions of the hexamer as rigid bodies in UCSF ChimeraX 1.3 (ref. 69). 
The atomic model was refined against the density using ISOLDE 1.3 
(ref. 70) and Phenix 1.19 (ref. 71). To create atomic representations of 
the filaments, symmetry copies of the hexamer were created in Chi-
meraX. To visualize the placement of CP hexamers and pentamers in 
the cap, the caps of the 6HB-2k filament were manually picked in the 
micrographs. The cap structure was refined using the Helix Refine 
function omitting symmetrization, as this allowed limiting the tilt 
angle of the caps close to side views. Reconstruction of the cap was 
filtered to its local resolution using Local Filter. The hexamer atomic 
model and previously determined pentamer structure (extracted 
from PDB:1cwp after applying icosahedral symmetry) were fitted as 
rigid bodies in ChimeraX 1.3. Data-processing parameters are given in 
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Supplementary Table 4. Model refinement and validation parameters 
are shown in Supplementary Table 5.

SAXS
The samples for SAXS were prepared at origami concentrations of 
165 nM (6HB, corresponding to a disassembled CP concentration of 
330 μM) and 180 nM (24HB, corresponding to a disassembled CP con-
centration of 450 μM) and sealed within a 1.5-mm-diameter glass capil-
lary. The measurements were performed using a Xenocs Xeuss 3.0C 
device equipped with a GeniX 3D copper microfocus source (wave-
length λ = 1.542 Å) and an EIGER2 R 1M hybrid pixel detector at a sam-
ple–detector distance of 1,100 mm. Data acquisition was performed 
for 3 × 3 h per sample. To obtain the 1D SAXS data, the 2D scattering 
data were azimuthally averaged. The magnitude of the scattering vector 
q is given by q = 4π sinθ/λ  with 2θ being the scattering angle. Data 
treatment included averaging of the triplicate 2D data of each sample, 
background subtraction from the complexation buffer (3.25 mM 
HEPES-NaOH, 25 mM Tris–HCl, 150 mM NaCl, 0.5 mM DTT) and a form 
factor was fitted to a cylinder (6HB, 24HB), spheres (T = 3 icosahedral 
CPs assemblies) and a core–shell cylinder (6HB-2k, 24HB-2.5k) using 
SasView software. A Debye–Anderson–Brumberger model was added 
to account for the background.

Data availability
All data generated or analysed during this study are included in this 
published article and its Supplementary Information files (including 
Supplementary Notes 1–24, Supplementary Figs. 1–20 and Supplemen-
tary Tables 1–5) or are available from the corresponding authors upon 
request. Cryo-EM maps and atomic models reported in this study have 
been deposited in the Electron Microscopy Data Bank (EMDB) under 
accession codes EMD-16076, EMD-16077, EMD-16078, EMD-16079, 
EMD-16080 and in the Protein Data Bank (PDB) under accession identi-
fier PDB 8BI4. Source data are provided with this paper.
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