Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coherent control of a high-orbital hole in a semiconductor quantum dot

Abstract

Coherently driven semiconductor quantum dots are one of the most promising platforms for non-classical light sources and quantum logic gates which form the foundation of photonic quantum technologies. However, to date, coherent manipulation of single charge carriers in quantum dots is limited mainly to their lowest orbital states. Ultrafast coherent control of high-orbital states is obstructed by the demand for tunable terahertz pulses. To break this constraint, we demonstrate an all-optical method to control high-orbital states of a hole via a stimulated Auger process. The coherent nature of the Auger process is proved by Rabi oscillation and Ramsey interference. Harnessing this coherence further enables the investigation of the single-hole relaxation mechanism. A hole relaxation time of 161 ps is observed and attributed to the phonon bottleneck effect. Our work opens new possibilities for understanding the fundamental properties of high-orbital states in quantum emitters and for developing new types of orbital-based quantum photonic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Radiative Auger emission from a positively charged QD.
Fig. 2: Rabi oscillation of a high-orbital hole.
Fig. 3: Ramsey interference.
Fig. 4: Direct measurement of single-hole relaxation dynamics.
Fig. 5: Energy separation dependence of hole-relaxation time.

Data availability

The raw data that support the findings of this study are available at https://doi.org/10.5281/zenodo.7947362 and from the corresponding author upon reasonable request.

Code availability

The codes that have been used for this study are available from the corresponding author upon reasonable request.

References

  1. Zrenner, A. et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–614 (2002).

    Article  CAS  Google Scholar 

  2. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  CAS  Google Scholar 

  3. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  CAS  Google Scholar 

  4. Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859–863 (2008).

    Article  CAS  Google Scholar 

  5. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  CAS  Google Scholar 

  6. Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    Article  Google Scholar 

  7. Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    Article  CAS  Google Scholar 

  8. Liu, F. et al. High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol. 13, 835–840 (2018).

    Article  CAS  Google Scholar 

  9. Huber, D. et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat. Commun. 8, 15506 (2017).

    Article  CAS  Google Scholar 

  10. Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 14, 586–593 (2019).

    Article  CAS  Google Scholar 

  11. Sun, S., Kim, H., Luo, Z., Solomon, G. S. & Waks, E. A single-photon switch and transistor enabled by a solid-state quantum memory. Science 361, 57–60 (2018).

    Article  CAS  Google Scholar 

  12. Jeannic, H. L. et al. Dynamical photon–photon interaction mediated by a quantum emitter. Nat. Phys. 18, 1191–1195 (2022).

    Article  CAS  Google Scholar 

  13. Li, X. et al. An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809–811 (2003).

    Article  CAS  Google Scholar 

  14. Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2021).

    Article  Google Scholar 

  15. Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

    Article  Google Scholar 

  16. Zibik, E. A. et al. Long lifetimes of quantum-dot intersublevel transitions in the terahertz range. Nat. Mater. 8, 803–807 (2009).

    Article  CAS  Google Scholar 

  17. Löbl, M. C. et al. Radiative Auger process in the single-photon limit. Nat. Nanotechnol. 15, 558–562 (2020).

    Article  Google Scholar 

  18. Qian, C. et al. Enhanced strong interaction between nanocavities and p-shell excitons beyond the dipole approximation. Phys. Rev. Lett. 122, 087401 (2019).

    Article  CAS  Google Scholar 

  19. Volz, T. et al. Ultrafast all-optical switching by single photons. Nat. Photonics 6, 605–609 (2012).

    Article  Google Scholar 

  20. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  CAS  Google Scholar 

  21. Litvinenko, K. et al. Coherent creation and destruction of orbital wavepackets in Si:P with electrical and optical read-out. Nat. Commun. 6, 6549 (2015).

    Article  CAS  Google Scholar 

  22. Qin, Q., Williams, B. S., Kumar, S., Reno, J. L. & Hu, Q. Tuning a terahertz wire laser. Nat. Photonics 3, 732–737 (2009).

    Article  CAS  Google Scholar 

  23. Täschler, P. et al. Femtosecond pulses from a mid-infrared quantum cascade laser. Nat. Photonics 15, 919–924 (2021).

    Article  Google Scholar 

  24. Åberg, T. & Utriainen, J. Evidence for a ‘radiative Auger effect’ in X-ray photon emission. Phys. Rev. Lett. 22, 1346–1348 (1969).

    Article  Google Scholar 

  25. Nash, K. J., Skolnick, M. S., Saker, M. K. & Bass, S. J. Many body shakeup in quantum well luminescence spectra. Phys. Rev. Lett. 70, 3115–3118 (1993).

    Article  CAS  Google Scholar 

  26. Paskov, P. et al. Auger processes in InAs self-assembled quantum dots. Physica E Low Dimens. Syst. Nanostruct. 6, 440–443 (2000).

    Article  CAS  Google Scholar 

  27. Antolinez, F. V., Rabouw, F. T., Rossinelli, A. A., Cui, J. & Norris, D. J. Observation of electron shakeup in CdSe/CdS core/shell nanoplatelets. Nano Lett. 19, 8495–8502 (2019).

    Article  CAS  Google Scholar 

  28. Spinnler, C. et al. Optically driving the radiative Auger transition. Nat. Commun. 12, 6575 (2021).

    Article  CAS  Google Scholar 

  29. Cygorek, M., Korkusinski, M. & Hawrylak, P. Atomistic theory of electronic and optical properties of InAsP/InP nanowire quantum dots. Phys. Rev. B 101, 075307 (2020).

    Article  CAS  Google Scholar 

  30. Zieliński, M., Korkusiński, M. & Hawrylak, P. Atomistic tight-binding theory of multiexciton complexes in a self-assembled InAs quantum dot. Phys. Rev. B 81, 085301 (2010).

    Article  Google Scholar 

  31. Holtkemper, M., Reiter, D. E. & Kuhn, T. Influence of the quantum dot geometry on p-shell transitions in differently charged quantum dots. Phys. Rev. B 97, 075308 (2018).

    Article  CAS  Google Scholar 

  32. Reindl, M. et al. Highly indistinguishable single photons from incoherently excited quantum dots. Phys. Rev. B 100, 155420 (2019).

    Article  CAS  Google Scholar 

  33. Gawarecki, K. et al. Structural symmetry-breaking to explain radiative Auger transitions in self-assembled quantum dots. Preprint at arXiv https://doi.org/10.48550/arXiv.2208.12069 (2022).

  34. Iles-Smith, J., McCutcheon, D. P. S., Nazir, A. & Mørk, J. Phonon scattering inhibits simultaneous near-unity efficiency and indistinguishability in semiconductor single-photon sources. Nat. Photonics 11, 521–526 (2017).

    Article  CAS  Google Scholar 

  35. Roy, C. & Hughes, S. Influence of electron–acoustic-phonon scattering on intensity power broadening in a coherently driven quantum-dot-cavity system. Phys. Rev. X 1, 021009 (2011).

    Google Scholar 

  36. Reigue, A. et al. Probing electron–phonon interaction through two-photon interference in resonantly driven semiconductor quantum dots. Phys. Rev. Lett. 118, 233602 (2017).

    Article  Google Scholar 

  37. De Greve, K. et al. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nat. Phys. 7, 872–878 (2011).

    Article  Google Scholar 

  38. Greilich, A., Carter, S. G., Kim, D., Bracker, A. S. & Gammon, D. Optical control of one and two hole spins in interacting quantum dots. Nat. Photonics 5, 702–708 (2011).

    Article  CAS  Google Scholar 

  39. Godden, T. M. et al. Coherent optical control of the spin of a single hole in an InAs/GaAs quantum dot. Phys. Rev. Lett. 108, 017402 (2012).

    Article  CAS  Google Scholar 

  40. Greve, K. D., Press, D., McMahon, P. L. & Yamamoto, Y. Ultrafast optical control of individual quantum dot spin qubits. Rep. Prog. Phys. 76, 092501 (2013).

    Article  Google Scholar 

  41. Ramsay, A. J. et al. Damping of exciton rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots. Phys. Rev. Lett. 104, 017402 (2010).

    Article  CAS  Google Scholar 

  42. Tredicucci, A. Long life in zero dimensions. Nat. Mater. 8, 775–776 (2009).

    Article  CAS  Google Scholar 

  43. Jin, C. Y. et al. Vertical-geometry all-optical switches based on InAs/GaAs quantum dots in a cavity. Appl. Phys. Lett. 95, 021109 (2009).

    Article  Google Scholar 

  44. Vurgaftman, I. & Singh, J. Effect of spectral broadening and electron hole scattering on carrier relaxation in GaAs quantum dots. Appl. Phys. Lett. 64, 232–234 (1994).

    Article  CAS  Google Scholar 

  45. Cogan, D., Su, Z.-E., Kenneth, O. & Gershoni, D. Deterministic generation of indistinguishable photons in a cluster state. Nat. Photonics 17, 324–329 (2023).

    Article  CAS  Google Scholar 

  46. Efros, A. L., Kharchenko, V. & Rosen, M. Breaking the phonon bottleneck in nanometer quantum dots: role of Auger-like processes. Solid State Commun. 93, 281–284 (1995).

    Article  CAS  Google Scholar 

  47. Hopfmann, C. et al. Heralded preparation of spin qubits in droplet-etched GaAs quantum dots using quasiresonant excitation. Phys. Rev. B 104, 075301 (2021).

    Article  CAS  Google Scholar 

  48. Benisty, H., Sotomayor-Torrès, C. M. & Weisbuch, C. Intrinsic mechanism for the poor luminescence properties of quantum-box systems. Phys. Rev. B 44, 10945–10948 (1991).

    Article  CAS  Google Scholar 

  49. Urayama, J., Norris, T. B., Singh, J. & Bhattacharya, P. Observation of phonon bottleneck in quantum dot electronic relaxation. Phys. Rev. Lett. 86, 4930–4933 (2001).

    Article  CAS  Google Scholar 

  50. Madsen, K. H. et al. Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics. Phys. Rev. B 88, 045316 (2013).

    Article  Google Scholar 

  51. Reiter, D. E., Kuhn, T. & Axt, V. M. Distinctive characteristics of carrier–phonon interactions in optically driven semiconductor quantum dots. Adv. Phys. X 4, 1655478 (2019).

    CAS  Google Scholar 

  52. Pan, D., Towe, E., Kennerly, S. & Kong, M.-Y. Tuning of conduction intersublevel absorption wavelengths in (In, Ga)As/GaAs quantum-dot nanostructures. Appl. Phys. Lett. 76, 3537–3539 (2000).

    Article  CAS  Google Scholar 

  53. Zibik, E. A. et al. Effects of alloy intermixing on the lateral confinement potential in InAs/GaAs self-assembled quantum dots probed by intersublevel absorption spectroscopy. Appl. Phys. Lett. 90, 163107 (2007).

    Article  Google Scholar 

  54. Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).

    Article  CAS  Google Scholar 

  55. Kaldewey, T. et al. Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch. Nat. Photonics 12, 68–72 (2018).

    Article  CAS  Google Scholar 

  56. Kianinia, M. et al. All-optical control and super-resolution imaging of quantum emitters in layered materials. Nat. Commun. 9, 874 (2018).

    Article  Google Scholar 

  57. Chen, P. et al. Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes. Nature 599, 404–410 (2021).

    Article  CAS  Google Scholar 

  58. Chow, C. M. E. et al. Monolayer semiconductor auger detector. Nano Lett. 20, 5538–5543 (2020).

    Article  CAS  Google Scholar 

  59. Babin, H. G. et al. Charge tunable GaAs quantum dots in a photonic n-i-p diode. Nanomaterials 11, 2703 (2021).

    Article  CAS  Google Scholar 

  60. Zhai, L. et al. Low-noise GaAs quantum dots for quantum photonics. Nat. Commun. 11, 4745 (2020).

    Article  CAS  Google Scholar 

  61. Babin, H.-G. et al. Full wafer property control of local droplet etched GaAs quantum dots. J. Cryst. Growth 591, 126713 (2022).

    Article  CAS  Google Scholar 

  62. Kuhlmann, A. V. et al. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode. Rev. Sci. Instrum. 84, 073905 (2013).

    Article  Google Scholar 

  63. Yan, J. et al. Double-pulse generation of indistinguishable single photons with optically controlled polarization. Nano Lett. 22, 1483–1490 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Viteritti for electrical contact preparation of the sample and D. E. Reiter for fruitful discussions. F.L., D.-W.W. and W.C. acknowledge support from the National Natural Science Foundation of China (U21A6006, 62075194, 61975177, U20A20164, 11934011, 62122067) and Fundamental Research Funds for the Central Universities (2021QNA5006). H.-G.B., A.D.W. and A.L. acknowledge support from the BMBF-QR.X Project 16KISQ009 and the DFH/UFA, Project CDFA-05-06.

Author information

Authors and Affiliations

Authors

Contributions

F.L. and J.-Y.Y. conceived the project. H.-G.B., A.D.W. and A.L. grew the wafer and fabricated the sample. Y.-T.W., H.D. and W.C. performed optical and electronic transport simulations for the sample. J.-Y.Y., C.C., X.-D.Z. and Y.M. carried out the experiments. J.-Y.Y., M.C. and F.L. analysed the data. J.-Y.Y. and D.-W.W. performed the quantum dynamics simulation. X.H., W.F., X.L., D.-W.W., C.-Y.J. and F.L. provided supervision and expertise. J.-Y.Y. and F.L. wrote the manuscript with comments and inputs from all the authors.

Corresponding author

Correspondence to Feng Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Schematic of the experimental set-up.

A single QD device is kept in a cryostat at 3.6 K and is excited under pulsed resonant excitation. A Ti-sapphire laser is used to generate 140 femtosecond optical pulses with an 80 MHz repetition rate. The femtosecond pulses are then sent into two folded pulse shapers63 to pick out two picosecond pulses with time delay controlled by delayline 1. Each pulse is divided into two arms and another controlled delay is introduced by delayline 2 and 3. Finally, the four pulses are recombined and focused on the sample by an NA=0.81 objective lens. A pair of polarizers working at a cross-polarization configuration is used to filter out the resonant excitation laser62. The experimental data shown in the main text are acquired with the pulse sequences shown in the lower right corner.

Supplementary information

Supplementary Information

Supplementary sections I–VIII and Figs. 1–14.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, JY., Chen, C., Zhang, XD. et al. Coherent control of a high-orbital hole in a semiconductor quantum dot. Nat. Nanotechnol. 18, 1139–1146 (2023). https://doi.org/10.1038/s41565-023-01442-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01442-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing