Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly stable and pure single-photon emission with 250 ps optical coherence times in InP colloidal quantum dots

Abstract

Quantum photonic technologies such as quantum communication, sensing or computation require efficient, stable and pure single-photon sources. Epitaxial quantum dots (QDs) have been made capable of on-demand photon generation with high purity, indistinguishability and brightness, although they require precise fabrication and face challenges in scalability. By contrast, colloidal QDs are batch synthesized in solution but typically have broader linewidths, low single-photon purities and unstable emission. Here we demonstrate spectrally stable, pure and narrow-linewidth single-photon emission from InP/ZnSe/ZnS colloidal QDs. Using photon correlation Fourier spectroscopy, we observe single-dot linewidths as narrow as ~5 µeV at 4 K, giving a lower-bounded optical coherence time, T2, of ~250 ps. These dots exhibit minimal spectral diffusion on timescales of microseconds to minutes, and narrow linewidths are maintained on timescales up to 50 ms, orders of magnitude longer than other colloidal systems. Moreover, these InP/ZnSe/ZnS dots have single-photon purities g(2)(τ = 0) of 0.077–0.086 in the absence of spectral filtering. This work demonstrates the potential of heavy-metal-free InP-based QDs as spectrally stable sources of single photons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: InP/ZnSe/ZnS QD structure and energy levels.
Fig. 2: Tracking spectral stability on a timescale of seconds–minutes.
Fig. 3: Using PCFS to track spectral diffusion on microsecond–millisecond timescales.
Fig. 4: Γ extracted from interferogram fits at different τ for dots InP-1–3 and CdSe-1.
Fig. 5: Single-photon emission properties of colloidal InP/ZnSe/ZnS QDs.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available via Zenodo at https://doi.org/10.5281/zenodo.7884365. The data that support the findings of this study are also available from the corresponding author upon reasonable request.

Code availability

All code and scripts used in this study are available from the corresponding author upon reasonable request. For analysing the PCFS experiments, code and examples are available at https://github.com/nanocluster/photons.

References

  1. Lu, X. et al. Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nat. Phys. 15, 373–381 (2019).

    Article  CAS  Google Scholar 

  2. Guo, X. et al. Distributed quantum sensing in a continuous-variable entangled network. Nat. Phys. 16, 281–284 (2020).

    Article  CAS  Google Scholar 

  3. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  CAS  Google Scholar 

  4. Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article  CAS  Google Scholar 

  5. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photonics 10, 631–641 (2016).

    Article  CAS  Google Scholar 

  6. Dietrich, A. et al. Observation of Fourier transform limited lines in hexagonal boron nitride. Phys. Rev. B 98, 081414 (2018).

    Article  CAS  Google Scholar 

  7. Spokoyny, B. et al. Effect of spectral diffusion on the coherence properties of a single quantum emitter in hexagonal boron nitride. J. Phys. Chem. Lett. 11, 1330–1335 (2020).

    Article  CAS  Google Scholar 

  8. Aharonovich, I. & Neu, E. Diamond nanophotonics. Adv. Opt. Mater. 2, 911–928 (2014).

    Article  CAS  Google Scholar 

  9. He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    Article  CAS  Google Scholar 

  10. Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics 4, 174–177 (2010).

    Article  CAS  Google Scholar 

  11. Nilsson, J. et al. Quantum teleportation using a light-emitting diode. Nat. Photonics 7, 311–315 (2013).

    Article  CAS  Google Scholar 

  12. Salter, C. L. et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010).

    Article  CAS  Google Scholar 

  13. Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570–575 (2013).

    Article  CAS  Google Scholar 

  14. Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).

    Article  CAS  Google Scholar 

  15. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photonics 10, 340–345 (2016).

    Article  CAS  Google Scholar 

  16. Müller, M., Bounouar, S., Jöns, K. D., Glässl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 224–228 (2014).

    Article  Google Scholar 

  17. Dousse, A. et al. Controlled light–matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. Phys. Rev. Lett. 101, 267404 (2008).

    Article  CAS  Google Scholar 

  18. Efros, A. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54, 4843–4856 (1996).

    Article  CAS  Google Scholar 

  19. Sercel, P. C. & Efros, A. L. Band-edge exciton in CdSe and other II–VI and III–V compound semiconductor nanocrystals – revisited. Nano Lett. 18, 4061–4068 (2018).

    Article  CAS  Google Scholar 

  20. Nirmal, M. et al. Observation of the ‘dark exciton’ in CdSe quantum dots. Phys. Rev. Lett. 75, 3728–3731 (1995).

    Article  CAS  Google Scholar 

  21. Empedocles, S. A. & Bawendi, M. G. Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots. J. Phys. Chem. B 103, 1826–1830 (1999).

    Article  CAS  Google Scholar 

  22. Empedocles, S. A. & Bawendi, M. G. Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots. Science 278, 2114–2117 (1997).

    Article  CAS  Google Scholar 

  23. Fernée, M. J. et al. Spontaneous spectral diffusion in CdSe quantum dots. J. Phys. Chem. Lett. 3, 1716–1720 (2012).

    Article  Google Scholar 

  24. Thoma, A. et al. Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong–Ou–Mandel experiments. Phys. Rev. Lett. 116, 033601 (2016).

    Article  CAS  Google Scholar 

  25. Becker, M. A. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).

    Article  CAS  Google Scholar 

  26. Kaplan, A. E. K. et al. Hong–Ou–Mandel interference in colloidal CsPbBr3 perovskite nanocrystals. Nat. Photonics https://doi.org/10.1038/s41566-023-01225-w (2023).

  27. Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article  CAS  Google Scholar 

  28. Kelley, A. M. et al. Identity of the reversible hole traps in InP/ZnSe core/shell quantum dots. J. Chem. Phys. 157, 174701 (2022).

    Article  CAS  Google Scholar 

  29. Lange, H. & Kelley, D. F. Spectroscopic effects of lattice strain in InP/ZnSe and InP/ZnS nanocrystals. J. Phys. Chem. C 124, 22839–22844 (2020).

    Article  CAS  Google Scholar 

  30. Jang, E., Kim, Y., Won, Y.-H., Jang, H. & Choi, S.-M. Environmentally friendly InP-based quantum dots for efficient wide color gamut displays. ACS Energy Lett. 5, 1316–1327 (2020).

    Article  CAS  Google Scholar 

  31. Kim, T., Won, Y.-H., Jang, E. & Kim, D. Negative trion Auger recombination in highly luminescent InP/ZnSe/ZnS quantum dots. Nano Lett. 21, 2111–2116 (2021).

    Article  CAS  Google Scholar 

  32. Hinuma, Y., Grüneis, A., Kresse, G. & Oba, F. Band alignment of semiconductors from density-functional theory and many-body perturbation theory. Phys. Rev. B 90, 155405 (2014).

    Article  Google Scholar 

  33. Berkinsky, D. B. et al. Narrow intrinsic line widths and electron–phonon coupling of InP colloidal quantum dots. ACS Nano https://doi.org/10.1021/acsnano.2c10237 (2023).

  34. Brodu, A. et al. Exciton fine structure and lattice dynamics in InP/ZnSe core/shell quantum dots. ACS Photonics 5, 3353–3362 (2018).

    Article  CAS  Google Scholar 

  35. Labeau, O., Tamarat, P. & Lounis, B. Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. Phys. Rev. Lett. 90, 257404 (2003).

    Article  Google Scholar 

  36. Marshall, L. F. Spectral Dynamics of Single Quantum Dots: A Study using Photon-Correlation Fourier Spectroscopy for Submillisecond Time Resolution at Low Temperature and in Solution. PhD thesis, Massachusetts Institute of Technology (2011).

  37. Brokmann, X., Bawendi, M., Coolen, L. & Hermier, J.-P. Photon-correlation Fourier spectroscopy. Opt. Express 14, 6333–6341 (2006).

    Article  Google Scholar 

  38. Beyler, A. P., Marshall, L. F., Cui, J., Brokmann, X. & Bawendi, M. G. Direct observation of rapid discrete spectral dynamics in single colloidal CdSe–CdS core–shell quantum dots. Phys. Rev. Lett. 111, 177401 (2013).

    Article  Google Scholar 

  39. Muller, A., Fang, W., Lawall, J. & Solomon, G. S. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect. Phys. Rev. Lett. 103, 217402 (2009).

    Article  Google Scholar 

  40. Muller, A., Fang, W., Lawall, J. & Solomon, G. S. Emission spectrum of a dressed exciton–biexciton complex in a semiconductor quantum dot. Phys. Rev. Lett. 101, 027401 (2008).

    Article  Google Scholar 

  41. Laferriѐre, P. et al. Unity yield of deterministically positioned quantum dot single photon sources. Sci. Rep. 12, 6376 (2022).

    Article  Google Scholar 

  42. Haffouz, S. et al. Bright single InAsP quantum dots at telecom wavelengths in position-controlled InP nanowires: the role of the photonic waveguide. Nano Lett. 18, 3047–3052 (2018).

    Article  CAS  Google Scholar 

  43. Sun, W. et al. Elastic phonon scattering dominates dephasing in weakly confined cesium lead bromide nanocrystals at cryogenic temperatures. Nano Lett. 23, 2615–2622 (2023).

    Article  CAS  Google Scholar 

  44. Coolen, L., Brokmann, X., Spinicelli, P. & Hermier, J.-P. Emission characterization of a single CdSe–ZnS nanocrystal with high temporal and spectral resolution by photon-correlation Fourier spectroscopy. Phys. Rev. Lett. 100, 027403 (2008).

    Article  CAS  Google Scholar 

  45. Luo, Y. & Wang, L.-W. Electronic structures of the CdSe/CdS core–shell nanorods. ACS Nano 4, 91–98 (2010).

    Article  CAS  Google Scholar 

  46. Nasilowski, M., Spinicelli, P., Patriarche, G. & Dubertret, B. Gradient CdSe/CdS quantum dots with room temperature biexciton unity quantum yield. Nano Lett. 15, 3953–3958 (2015).

    Article  CAS  Google Scholar 

  47. Wang, X., Yu, J. & Chen, R. Optical characteristics of ZnS passivated CdSe/CdS quantum dots for high photostability and lasing. Sci. Rep. 8, 17323 (2018).

    Article  Google Scholar 

  48. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  CAS  Google Scholar 

  49. Mangum, B. D., Ghosh, Y., Hollingsworth, J. A. & Htoon, H. Disentangling the effects of clustering and multi-exciton emission in second-order photon correlation experiments. Opt. Express 21, 7419–7426 (2013).

    Article  Google Scholar 

  50. Proppe, A. H. et al. Adversarial autoencoder ensemble for fast and probabilistic reconstructions of few-shot photon correlation functions for solid-state quantum emitters. Phys. Rev. B 106, 045425 (2022).

    Article  CAS  Google Scholar 

  51. Chen, B., Li, D. & Wang, F. InP quantum dots: synthesis and lighting applications. Small 16, 2002454 (2020).

    Article  CAS  Google Scholar 

  52. Quintero-Bermudez, R., Sabatini, R. P., Lejay, M., Voznyy, O. & Sargent, E. H. Small-band-offset perovskite shells increase Auger lifetime in quantum dot solids. ACS Nano 11, 12378–12384 (2017).

    Article  CAS  Google Scholar 

  53. Chandrasekaran, V. et al. Nearly blinking-free, high-purity single-photon emission by colloidal InP/ZnSe quantum dots. Nano Lett. 17, 6104–6109 (2017).

    Article  CAS  Google Scholar 

  54. Nair, G., Zhao, J. & Bawendi, M. G. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics. Nano Lett. 11, 1136–1140 (2011).

    Article  CAS  Google Scholar 

  55. Hoang, T. B., Akselrod, G. M. & Mikkelsen, M. H. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett. 16, 270–275 (2016).

    Article  CAS  Google Scholar 

  56. Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    Article  CAS  Google Scholar 

  57. Park, Y.-S., Lim, J. & Klimov, V. I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat. Mater. 18, 249–255 (2019).

    Article  CAS  Google Scholar 

  58. Fedin, I. et al. Enhanced emission from bright excitons in asymmetrically strained colloidal CdSe/CdxZn1−xSe quantum dots. ACS Nano 15, 14444–14452 (2021).

    Article  CAS  Google Scholar 

  59. Valencia, D. et al. Unravelling the chemical reactions of fatty acids and triacylglycerides under hydrodeoxygenation conditions based on a comprehensive thermodynamic analysis. Biomass Bioenergy 112, 37–44 (2018).

    Article  CAS  Google Scholar 

  60. Cortes, C. L., Adhikari, S., Ma, X. & Gray, S. K. Accelerating quantum optics experiments with statistical learning. Appl. Phys. Lett. 116, 184003 (2020).

    Article  CAS  Google Scholar 

  61. Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).

    Article  CAS  Google Scholar 

  62. Yuan, Y. et al. Cu-catalyzed synthesis of CdZnSe–CdZnS alloy quantum dots with highly tunable emission. Chem. Mater. 31, 2635–2643 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.H.P., D.B.B., T.Š., A.E.K.K. and J.R.H. were supported by the Samsung Advanced Institute of Technology (SAIT). H.Z. was supported by the National Science Foundation (Award No. CHE-2108357). A.H.P. was also supported by a Postdoctoral Fellowship from the Natural Sciences and Engineering Research Council of Canada (NSERC). This work was supported by SAIT, Samsung Electronics Co., Ltd.

Author information

Authors and Affiliations

Authors

Contributions

A.H.P. and D.B.B. contributed equally to this work. A.H.P. acquired all experimental data and performed all data fitting and analysis. D.B.B. assisted in acquiring all experimental data and data analysis. T.Š. assisted with sample preparation and the optical setup. A.E.K.K. assisted with the optical setup. J.R.H. assisted with data collection of the QD radiative lifetimes. H.Z. provided the CdSe/CdS/ZnS QDs and their TEM images. T.K. and H.C. provided the InP/ZnSe/ZnS dots and their TEM images. M.G.B. and S.J. supervised the project. All authors read and commented on the manuscript.

Corresponding author

Correspondence to Moungi G. Bawendi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6, Figs. 1–12, Tables 1–5 and refs. 1–25.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proppe, A.H., Berkinsky, D.B., Zhu, H. et al. Highly stable and pure single-photon emission with 250 ps optical coherence times in InP colloidal quantum dots. Nat. Nanotechnol. 18, 993–999 (2023). https://doi.org/10.1038/s41565-023-01432-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01432-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing