Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatially multiplexed single-molecule translocations through a nanopore at controlled speeds

Abstract

In current nanopore-based label-free single-molecule sensing technologies, stochastic processes influence the selection of translocating molecule, translocation rate and translocation velocity. As a result, single-molecule translocations are challenging to control both spatially and temporally. Here we present a method using a glass nanopore mounted on a three-dimensional nanopositioner to spatially select molecules, deterministically tethered on a glass surface, for controlled translocations. By controlling the distance between the nanopore and glass surface, we can actively select the region of interest on the molecule and scan it a controlled number of times and at a controlled velocity. Decreasing the velocity and averaging thousands of consecutive readings of the same molecule increases the signal-to-noise ratio by two orders of magnitude compared with free translocations. We demonstrate the method’s versatility by assessing DNA–protein complexes, DNA rulers and DNA gaps, achieving down to single-nucleotide gap detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Controlled translocations of single molecules with nanopore-based SICS.
Fig. 2: Controlled translocation of custom-designed DNA rulers increases SNR, precision and accuracy.
Fig. 3: Spatial addressability of single-molecule translocations demonstrated on DNA gaps.
Fig. 4: Detection of single-nucleotide gaps with SICS.

Similar content being viewed by others

Data availability

The data that support the plots in Figs. 1b,c, 2b–g, 3c–e and 4b,d are available via Zenodo at https://doi.org/10.5281/zenodo.7834215. Source data are provided with this paper.

References

  1. Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    Article  CAS  Google Scholar 

  2. Schneider, G. F. & Dekker, C. DNA sequencing with nanopores. Nat. Biotechnol. 30, 326–328 (2012).

    Article  CAS  Google Scholar 

  3. Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 374, 1509–1513 (2021).

    Article  CAS  Google Scholar 

  4. Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).

    Article  CAS  Google Scholar 

  5. Derrington, I. M. et al. Subangstrom single-molecule measurements of motor proteins using a nanopore. Nat. Biotechnol. 33, 1073–1075 (2015).

    Article  CAS  Google Scholar 

  6. Fragasso, A., Schmid, S. & Dekker, C. Comparing current noise in biological and solid-state nanopores. ACS Nano 14, 1338–1349 (2020).

    Article  CAS  Google Scholar 

  7. Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    Article  CAS  Google Scholar 

  8. Storm, A., Chen, J., Ling, X., Zandbergen, H. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003).

    Article  CAS  Google Scholar 

  9. Dekker, C. Solid-state nanopores. Nanoscience and Technology: A Collection of Reviews from Nature Journals 60–66 (2010).

  10. Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).

    Article  CAS  Google Scholar 

  11. Xue, L. et al. Solid-state nanopore sensors. Nat. Rev. Mater. 5, 931–951 (2020).

    Article  CAS  Google Scholar 

  12. Yusko, E. C. et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 12, 360–367 (2017).

    Article  CAS  Google Scholar 

  13. Lu, B., Albertorio, F., Hoogerheide, D. P. & Golovchenko, J. A. Origins and consequences of velocity fluctuations during DNA passage through a nanopore. Biophys. J. 101, 70–79 (2011).

    Article  CAS  Google Scholar 

  14. Plesa, C., Van Loo, N., Ketterer, P., Dietz, H. & Dekker, C. Velocity of DNA during translocation through a solid-state nanopore. Nano Lett. 15, 732–737 (2015).

    Article  CAS  Google Scholar 

  15. Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M. & Shepard, K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 9, 487–492 (2012).

    Article  CAS  Google Scholar 

  16. Steinbock, L. J., Otto, O., Chimerel, C., Gornall, J. & Keyser, U. F. Detecting DNA folding with nanocapillaries. Nano Lett. 10, 2493–2497 (2010).

    Article  CAS  Google Scholar 

  17. Bell, N. A. W., Chen, K., Ghosal, S., Ricci, M. & Keyser, U. F. Asymmetric dynamics of DNA entering and exiting a strongly confining nanopore. Nat. Commun. 8, 380 (2017).

    Article  Google Scholar 

  18. Steinbock, L. J., Bulushev, R. D., Krishnan, S., Raillon, C. & Radenovic, A. DNA translocation through low-noise glass nanopores. ACS Nano 7, 11255–11262 (2013).

    Article  CAS  Google Scholar 

  19. Aramesh, M. et al. Localized detection of ions and biomolecules with a force-controlled scanning nanopore microscope. Nat. Nanotechnol. 14, 791–798 (2019).

    Article  CAS  Google Scholar 

  20. Yuan, Z., Liu, Y., Dai, M., Yi, X. & Wang, C. Controlling DNA translocation through solid-state nanopores. Nanoscale Res. Lett. 15, 80 (2020).

    Article  CAS  Google Scholar 

  21. Rahman, M., Sampad, M. J. N., Hawkins, A. & Schmidt, H. Recent advances in integrated solid-state nanopore sensors. Lab Chip 21, 3030–3052 (2021).

    Article  CAS  Google Scholar 

  22. Hansma, P. K., Drake, B., Marti, O., Gould, S. A. & Prater, C. B. The scanning ion-conductance microscope. Science 243, 641–643 (1989).

    Article  CAS  Google Scholar 

  23. Korchev, Y. E., Bashford, C. L., Milovanovic, M., Vodyanoy, I. & Lab, M. J. Scanning ion conductance microscopy of living cells. Biophys. J. 73, 653–658 (1997).

    Article  CAS  Google Scholar 

  24. Novak, P. et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat. Methods 6, 279–281 (2009).

    Article  CAS  Google Scholar 

  25. Leitao, S. M. et al. Time-resolved scanning ion conductance microscopy for three-dimensional tracking of nanoscale cell surface dynamics. ACS Nano 15, 17613–17622 (2021).

    Article  CAS  Google Scholar 

  26. Navikas, V. et al. High-throughput nanocapillary filling enabled by microwave radiation for scanning ion conductance microscopy imaging. ACS Appl. Nano Mater. 3, 7829–7834 (2020).

    Article  CAS  Google Scholar 

  27. Rief, M., Oesterhelt, F., Heymann, B. & Gaub, H. E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997).

    Article  CAS  Google Scholar 

  28. Chen, K. et al. Dynamics of driven polymer transport through a nanopore. Nat. Phys. 17, 1043–1049 (2021).

    Article  CAS  Google Scholar 

  29. Chen, K. et al. Digital data storage using DNA nanostructures and solid-state nanopores. Nano Lett. 19, 1210–1215 (2018).

    Article  Google Scholar 

  30. Tabatabaei, S. K. et al. DNA punch cards for storing data on native DNA sequences via enzymatic nicking. Nat. Commun. 11, 1742 (2020).

    Article  CAS  Google Scholar 

  31. Clegg, R. M. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388 (1992).

    Article  CAS  Google Scholar 

  32. Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Methods Primers 1, 39 (2021).

    Article  CAS  Google Scholar 

  33. Jungmann, R. et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10, 4756–4761 (2010).

    Article  CAS  Google Scholar 

  34. Zhu, C. et al. Imaging with ion channels. Anal. Chem. 93, 5355–5359 (2021).

    Article  CAS  Google Scholar 

  35. Radmacher, M., Cleveland, J. P., Fritz, M., Hansma, H. G. & Hansma, P. K. Mapping interaction forces with the atomic force microscope. Biophys. J. 66, 2159–2165 (1994).

    Article  CAS  Google Scholar 

  36. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  Google Scholar 

  37. Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Open Phys. 10, 181–188 (2012).

    Article  Google Scholar 

  38. Wang, H. & Hays, J. B. Simple and rapid preparation of gapped plasmid DNA for incorporation of oligomers containing specific DNA lesions. Mol. Biotechnol. 19, 133–140 (2001).

    Article  CAS  Google Scholar 

  39. Jozwiakowski, S. K. & Connolly, B. A. Plasmid-based lacZα assay for DNA polymerase fidelity: application to archaeal family-B DNA polymerase. Nucleic Acids Res. 37, e102 (2009).

    Article  Google Scholar 

  40. Auburn, R. P. et al. Robotic spotting of cDNA and oligonucleotide microarrays. Trends Biotechnol. 23, 374–379 (2005).

    Article  CAS  Google Scholar 

  41. Navikas, V. et al. Correlative 3D microscopy of single cells using super-resolution and scanning ion-conductance microscopy. Nat. Commun. 12, 4565 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.M.L. and G.E.F. acknowledge support from the Swiss Commission for Technology and Innovation under grant CTI-18330.1, and the European Research Council under grant no. ERC-2017-CoG, InCell. V.N., H.M. and A.R. acknowledge support from the National Center of Competence in Research (NCCR) Bio-Inspired Materials and Max-Planck-EPFL Center of Molecular Nanoscience and Technology. K.C. and U.F.K. were funded by PoreDetect (ERC-2019-POC, 899538) and EarlyPore (ERC-2022-POC1, 101069324).

Author information

Authors and Affiliations

Authors

Contributions

S.M.L. developed the SICS system and performed the SICS measurements. S.M.L. and V.N. performed the data analysis with support from S.M. V.N. and H.M. prepared the single-molecule samples and fabricated the nanocapillaries. G.P.B. and A.K. created the DNA gap molecules. H.M. and S.F.M. created the oligonucleotides–DNA gap templates. K.C. and U.F.K. created the DNA rulers and provided free translocation data. S.M.L. and B.D. built the original SICM setup used in this work. A.R., G.E.F., S.M.L. and V.N. designed the experiments with input from all the authors. A.R. conceived the method. G.E.F. and A.R. supervised the project. S.M.L., G.E.F. and A.R. wrote the manuscript with input from all the authors.

Corresponding authors

Correspondence to G. E. Fantner or A. Radenovic.

Ethics declarations

Competing interests

A.R., G.E.F., S.M.L. and V.N. filed a patent application PCT/IB2022/055136 titled ‘Nanopore-based scanning system and method’, Switzerland.

Peer review

Peer review information

Nature Nanotechnology thanks Paolo Actis, Manoj Varma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16.

Source data

Source Data Fig. 1b

Source data containing the conductance signal as a function of distance for Fig. 1b.

Source Data Figs. 1c and 2b

Source data containing the conductance signal as a function of distance for Figs. 1c and 2b.

Source Data Fig. 2c

Source data containing the conductance signal as a function of distance for four different velocities for Fig. 2c.

Source Data Fig. 2d

SNR values for the detection of markers at different translocation velocities.

Source Data Fig. 2e

Values of amplitude and distance of the ruler’s markers in free translocations and controlled translocations.

Source Data Fig. 2f

Source data containing the conductance signal as a function of distance for Fig. 2f.

Source Data Fig. 2g

Source data containing the conductance signal as a function of distance for Fig. 2g.

Source Data Fig. 3c

Source data containing the conductance signal as a function of distance for Fig. 3c.

Source Data Fig. 3d

Source data containing the conductance values at a corresponding distance used to plot the density map in Fig. 3d.

Source Data Fig. 3e

Source data containing the conductance values at a corresponding distance used to plot the density map in Fig. 3e.

Source Data Fig. 4b top

Source data containing the conductance values at a corresponding distance used to plot the density map in Fig. 4b (top).

Source Data Fig. 4b bottom

Source data containing the conductance values at a corresponding distance used to plot the density map in Fig. 4b (bottom).

Source Data Fig. 4d

Source data containing the conductance values at a corresponding distance used to plot the density map in Fig. 4d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leitao, S.M., Navikas, V., Miljkovic, H. et al. Spatially multiplexed single-molecule translocations through a nanopore at controlled speeds. Nat. Nanotechnol. 18, 1078–1084 (2023). https://doi.org/10.1038/s41565-023-01412-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01412-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing