Abstract
Exceptional points (EPs) arising in non-Hermitian systems have led to a variety of intriguing wave phenomena, and have been attracting increased interest in various physical platforms. In this Review, we highlight the latest fundamental advances in the context of EPs in various nanoscale systems, and overview the theoretical progress related to EPs, including higher-order EPs, bulk Fermi arcs and Weyl exceptional rings. We peek into EP-associated emerging technologies, in particular focusing on the influence of noise for sensing near EPs, improving the efficiency in asymmetric transmission based on EPs, optical isolators in nonlinear EP systems and novel concepts to implement EPs in topological photonics. We also discuss the constraints and limitations of the applications relying on EPs, and offer parting thoughts about promising ways to tackle them for advanced nanophotonic applications.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).
Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 43, 205–214 (2002).
Mostafazadeh, A. Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum. J. Math. Phys. 43, 2814–2816 (2002).
Bender, C. M., Boettcher, S. & Meisinger, P. N. PT-symmetric quantum mechanics. J. Math. Phys. 40, 2201–2229 (1999).
Kato, T. Perturbation Teory of Linear Operators (Springer, 1966).
Berry, M. V. & Wilkinson, M. Diabolical points in the spectra of triangles. Proc. R. Soc. Lond. A 392, 15–43 (1984).
Keck, F., Korsch, H. J. & Mossmann, S. Unfolding a diabolic point: a generalized crossing scenario. J. Phys. A 36, 2125–2137 (2003).
Yang, J. et al. Diabolical points in coupled active cavities with quantum emitters. Light. Sci. Appl. 9, 6 (2020).
Heiss, W. D. Repulsion of resonance states and exceptional points. Phys. Rev. E 61, 929–932 (2000).
El-Ganainy, R., Makris, K. G., Christodoulides, D. N. & Musslimani, Z. H. Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632–2634 (2007).
Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).
Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).
Kottos, T. Broken symmetry makes light work. Nat. Phys. 6, 166–167 (2010).
Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).
Özdemir, Ş. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).
Hokmabadi, M. P., Schumer, A., Christodoulides, D. N. & Khajavikhan, M. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature 576, 70–74 (2019).
Song, W. et al. Breakup and recovery of topological zero modes in finite non-Hermitian optical lattices. Phys. Rev. Lett. 123, 165701 (2019).
Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photon. 11, 752–762 (2017).
El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).
Wang, C. et al. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys. 16, 334–340 (2020).
Zhang, F., Feng, Y., Chen, X., Ge, L. & Wan, W. Synthetic snti-PT symmetry in a single microcavity. Phys. Rev. Lett. 124, 053901 (2020).
Zhang, H. et al. Breaking anti-PT symmetry by spinning a resonator. Nano Lett. 20, 7594–7599 (2020).
Maayani, S. et al. Flying couplers above spinning resonators generate irreversible refraction. Nature 558, 569–572 (2018).
Park, S. H., Xia, S., Oh, S.-H., Avouris, P. & Low, T. Accessing the exceptional points in a graphene plasmon–vibrational mode coupled system. ACS Photon. 8, 3241–3248 (2021).
Bergman, A. et al. Observation of anti-parity–time-symmetry, phase transitions and exceptional points in an optical fibre. Nat. Commun. 12, 486 (2021).
Öztürk, F. E. et al. Observation of a non-Hermitian phase transition in an optical quantum gas. Science 372, 88–91 (2021).
Hlushchenko, A. V., Novitsky, D. V., Shcherbinin, V. I. & Tuz, V. R. Multimode PT-symmetry thresholds and third-order exceptional points in coupled dielectric waveguides with loss and gain. J. Opt. 23, 125002 (2021).
Xia, S. et al. Higher-order exceptional point and Landau–Zener Bloch oscillations in driven non-Hermitian photonic Lieb lattices. APL Photon. 6, 126106 (2021).
Laha, A., Beniwal, D., Dey, S., Biswas, A. & Ghosh, S. Third-order exceptional point and successive switching among three states in an optical microcavity. Phys. Rev. A 101, 063829 (2020).
Habler, N. & Scheuer, J. Higher-order exceptional points: a route for flat-top optical filters. Phys. Rev. A 101, 043828 (2020).
Zhou, H. et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 359, 1009–1012 (2018).
Xiao, Z. & Alù, A. Tailoring exceptional points in a hybrid PT-symmetric and anti-PT-symmetric scattering system. Nanophotonics 10, 3723–3733 (2021).
Chen, W., Yang, Q., Chen, Y. & Liu, W. Evolution and global charge conservation for polarization singularities emerging from non-Hermitian degeneracies. Proc. Natl Acad. Sci. USA 118, e2019578118 (2021).
Bauer, T. et al. Observation of optical polarization Möbius strips. Science 347, 964–966 (2015).
Miyai, E. et al. Lasers producing tailored beams. Nature 441, 946–946 (2006).
Ding, K., Ma, G., Zhang, Z. Q. & Chan, C. T. Experimental demonstration of an anisotropic exceptional point. Phys. Rev. Lett. 121, 085702 (2018).
Liao, Q. et al. Experimental measurement of the divergent quantum metric of an exceptional point. Phys. Rev. Lett. 127, 107402 (2021).
Zhang, S. M., Zhang, X. Z., Jin, L. & Song, Z. High-order exceptional points in supersymmetric arrays. Phys. Rev. A 101, 033820 (2020).
Jin, L., Wu, H. C., Wei, B.-B. & Song, Z. Hybrid exceptional point created from type-III Dirac point. Phys. Rev. B 101, 045130 (2020).
Liu, T., He, J. J., Yang, Z. & Nori, F. Higher-order Weyl-exceptional-ring semimetals. Phys. Rev. Lett. 127, 196801 (2021).
Ma, Y., Dong, B. & Lee, C. Progress of infrared guided-wave nanophotonic sensors and devices. Nano Converg. 7, 12 (2020).
Shakoor, A., Grant, J., Grande, M. & Cumming, D. R. S. Towards portable nanophotonic sensors. Sensors 19, 1715 (2019).
Karabchevsky, A., Katiyi, A., Ang, A. S. & Hazan, A. On-chip nanophotonics and future challenges. Nanophotonics 9, 3733–3753 (2020).
Sreekanth, K. V. et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 15, 621–627 (2016).
Meng, Y. et al. Optical meta-waveguides for integrated photonics and beyond. Light. Sci. Appl. 10, 235 (2021).
Oh, S.-H. et al. Nanophotonic biosensors harnessing van der Waals materials. Nat. Commun. 12, 3824 (2021).
Warning, L. A. et al. Nanophotonic approaches for chirality sensing. ACS Nano 15, 15538–15566 (2021).
Soler, M., Estevez, M. C., Cardenosa-Rubio, M., Astua, A. & Lechuga, L. M. How nanophotonic label-free biosensors can contribute to rapid and massive diagnostics of respiratory virus infections: COVID-19 case. ACS Sens. 5, 2663–2678 (2020).
Fedyanin, D. Y. & Stebunov, Y. V. All-nanophotonic NEMS biosensor on a chip. Sci. Rep. 5, 10968 (2015).
Kaushik, V. et al. On-chip nanophotonic broadband wavelength detector with 2D-electron gas: nanophotonic platform for wavelength detection in visible spectral region. Nanophotonics 11, 289–296 (2022).
Yu, X.-C. et al. Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field. Light. Sci. Appl. 7, 18003–18003 (2018).
Yan, Y.-Z. et al. Packaged silica microsphere-taper coupling system for robust thermal sensing application. Opt. Express 19, 5753–5759 (2011).
Yao, B. et al. Graphene-enhanced brillouin optomechanical microresonator for ultrasensitive gas detection. Nano Lett. 17, 4996–5002 (2017).
Katō, T. Perturbation Theory for Linear Operators (Springer, 1995).
Berry, M. V. Physics of nonhermitian degeneracies. Czech. J. Phys. 54, 1039–1047 (2004).
Zhu, J. et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photon. 4, 46–49 (2010).
Wiersig, J. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett. 112, 203901 (2014).
Wiersig, J. Sensors operating at exceptional points: general theory. Phys. Rev. A 93, 033809 (2016).
Wiersig, J. Review of exceptional point-based sensors. Photon. Res. 8, 1457–1467 (2020).
Chen, W., Kaya Ozdemir, S., Zhao, G., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017).
Carlo, M. D., Leonardis, F. D., Soref, R. A. & Passaro, V. M. N. Design of a trap-assisted exceptional-surface-enhanced silicon-on-insulator particle sensor. J. Lightwave Technol. 40, 6021–6029 (2022).
Li, J. et al. Exceptional point of nanocylinder-loaded silicon microring for single nanoparticle detection. Proc. SPIE 11979, 1197903 (2022).
Jiang, S. et al. Enhanced nanoparticle sensing by mode intensity in a non-reciprocally coupled microcavity. J. Appl. Phys. 131, 103106 (2022).
Zhong, Q. et al. Sensing with exceptional surfaces in order to combine sensitivity with robustness. Phys. Rev. Lett. 122, 153902 (2019).
Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017).
Farhat, M., Yang, M., Ye, Z. & Chen, P.-Y. PT-symmetric absorber-laser enables electromagnetic sensors with unprecedented sensitivity. ACS Photon.7, 2080–2088 (2020).
Park, J.-H. et al. Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nat. Phys. 16, 462–468 (2020).
Jiang, H. et al. Exceptional points and enhanced nanoscale sensing with a plasmon–exciton hybrid system. Photon. Res. 10, 557–563 (2022).
Feng, Z. & Sun, X. Giant enhancement of rotation sensing with PT-symmetric circular bragg lasers. Phys. Rev. Appl. 13, 054078 (2020).
Li, W. et al. Exceptional-surface-enhanced rotation sensing with robustness in a whispering-gallery-mode microresonator. Phys. Rev. A 104, 033505 (2021).
Lai, Y.-H., Lu, Y.-K., Suh, M.-G., Yuan, Z. & Vahala, K. Observation of the exceptional-point-enhanced Sagnac effect. Nature 576, 65–69 (2019).
Zhang, H., Peng, M., Xu, X.-W. & Jing, H. Anti-PT-symmetric Kerr gyroscope. Chin. Phys. B 31, 14215–014215 (2022).
Wu, Y., Zhou, P., Li, T., Wan, W. & Zou, Y. High-order exceptional point based optical sensor. Opt. Express 29, 6080–6091 (2021).
Soper, A., Leefmans, C., Parto, M., Williams, J. & Marandi, A. Experimental realization of a 64th order exceptional point on a time-multiplexed photonic resonator network. Proc. SPIE https://doi.org/10.1117/12.2613404 (2022).
Khanbekyan, M. & Scheel, S. Enantiomer-discriminating sensing using optical cavities at exceptional points. Phys. Rev. A 105, 053711 (2022).
Chen, L. Measuring Newtonian constant of gravitation at an exceptional point in an optomechanical system. Opt. Commun. 520, 128534 (2022).
Mortensen, N. A. et al. Fluctuations and noise-limited sensing near the exceptional point of parity–time-symmetric resonator systems. Optica 5, 1342–1346 (2018).
Xiao, Z., Li, H., Kottos, T. & Alù, A. Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point. Phys. Rev. Lett. 123, 213901 (2019).
Wang, H., Lai, Y.-H., Yuan, Z., Suh, M.-G. & Vahala, K. Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope. Nat. Commun. 11, 1610 (2020).
Wiersig, J. Prospects and fundamental limits in exceptional point-based sensing. Nat. Commun. 11, 2454 (2020).
Kononchuk, R., Feinberg, J., Knee, J. & Kottos, T. Enhanced avionic sensing based on Wigners cusp anomalies. Sci. Adv. 7, eabg8118 (2021).
Wiersig, J. Robustness of exceptional-point-based sensors against parametric noise: the role of Hamiltonian and Liouvillian degeneracies. Phys. Rev. A 101, 053846 (2020).
Duggan, R., A. Mann, S. & Alù, A. Limitations of sensing at an exceptional point. ACS Photon. 9, 1554–1566 (2022).
Wolff, C., Tserkezis, C. & Mortensen, N. A. On the time evolution at a fluctuating exceptional point. Nanophotonics 8, 1319–1326 (2019).
Langbein, W. No exceptional precision of exceptional-point sensors. Phys. Rev. A 98, 023805 (2018).
Grant, M. J. & Digonnet, M. J. F. Rotation sensitivity and shot-noise-limited detection in an exceptional-point coupled-ring gyroscope. Opt. Lett. 46, 2936–2939 (2021).
Kim, J. et al. Practical lineshape of a laser operating near an exceptional point. Sci. Rep. 11, 6164 (2021).
Lau, H.-K. & Clerk, A. A. Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun. 9, 4320 (2018).
Chen, C., Jin, L. & Liu, R.-B. Sensitivity of parameter estimation near the exceptional point of a non-Hermitian system. New J. Phys. 21, 083002 (2019).
Peters, K. J. H. & Rodriguez, S. R. K. Exceptional precision of a nonlinear optical sensor at a square-root singularity. Phys. Rev. Lett. 129, 013901 (2022).
Smith, D. D., Chang, H., Mikhailov, E. E. & Shahriar, S. M. Beyond the Petermann limit: prospect of increasing sensor precision near exceptional points. Phys. Rev. A 106, 013520 (2022).
Dembowski, C. et al. Encircling an exceptional point. Phys. Rev. E 69, 056216 (2004).
Gao, T. et al. Observation of non-Hermitian degeneracies in a chaotic exciton–polariton billiard. Nature 526, 554–558 (2015).
Milburn, T. J. et al. General description of quasiadiabatic dynamical phenomena near exceptional points. Phys. Rev. A 92, 052124 (2015).
Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016).
Zhang, X.-L., Jiang, T. & Chan, C. T. Dynamically encircling an exceptional point in anti-parity–time symmetric systems: asymmetric mode switching for symmetry-broken modes. Light. Sci. Appl. 8, 88 (2019).
Yoon, J. W. et al. Time-asymmetric loop around an exceptional point over the full optical communications band. Nature 562, 86–90 (2018).
Liu, Q. et al. Efficient mode transfer on a compact silicon chip by encircling moving exceptional points. Phys. Rev. Lett. 124, 153903 (2020).
Li, A. et al. Hamiltonian hopping for efficient chiral mode switching in encircling exceptional points. Phys. Rev. Lett. 125, 187403 (2020).
Shu, X. et al. Fast encirclement of an exceptional point for highly efficient and compact chiral mode converters. Nat. Commun. 13, 2123 (2022).
Wei, Y. et al. Anti-parity–time symmetry enabled on-chip chiral polarizer. Photon. Res. 10, 76–83 (2022).
Zhang, X.-L. & Chan, C. T. Dynamically encircling exceptional points in a three-mode waveguide system. Commun. Phys. 2, 63 (2019).
Yu, F., Zhang, X.-L., Tian, Z.-N., Chen, Q.-D. & Sun, H.-B. General rules governing the dynamical encircling of an arbitrary number of exceptional points. Phys. Rev. Lett. 127, 253901 (2021).
Hassan, A. U. et al. Chiral state conversion without encircling an exceptional point. Phys. Rev. A 96, 052129 (2017).
Liu, Q., Liu, J., Zhao, D. & Wang, B. On-chip experiment for chiral mode transfer without enclosing an exceptional point. Phys. Rev. A 103, 023531 (2021).
Nasari, H. et al. Observation of chiral state transfer without encircling an exceptional point. Nature 605, 256–261 (2022).
Khurgin, J. B. et al. Emulating exceptional-point encirclements using imperfect (leaky) photonic components: asymmetric mode-switching and omni-polarizer action. Optica 8, 563–569 (2021).
Schumer, A. et al. Topological modes in a laser cavity through exceptional state transfer. Science 375, 884–888 (2022).
Zhang, J.-Q. et al. Topological optomechanical amplifier in synthetic PT-symmetry. Nanophotonics 11, 1149–1158 (2022).
Wang, H., Assawaworrarit, S. & Fan, S. Dynamics for encircling an exceptional point in a nonlinear non-Hermitian system. Opt. Lett. 44, 638–641 (2019).
Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).
Wojcik, C. C., Wang, K., Dutt, A., Zhong, J. & Fan, S. Eigenvalue topology of non-Hermitian band structures in two and three dimensions. Phys. Rev. B 106, L161401 (2022).
Konotop, V. V., Yang, J. & Zezyulin, D. A. Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016).
Liu, Z. et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett. 123, 253901 (2019).
Hu, G. et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nat. Photon. 13, 467–472 (2019).
Choi, Y., Hahn, C., Yoon, J. W., Song, S. H. & Berini, P. Extremely broadband, on-chip optical nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps near exceptional points. Nat. Commun. 8, 14154 (2017).
Ramezanpour, S. & Bogdanov, A. Tuning exceptional points with Kerr nonlinearity. Phys. Rev. A 103, 043510 (2021).
Suwunnarat, S. et al. Non-linear coherent perfect absorption in the proximity of exceptional points. Commun. Phys. 5, 5 (2022).
Assawaworrarit, S., Yu, X. & Fan, S. Robust wireless power transfer using a nonlinear parity–time-symmetric circuit. Nature 546, 387–390 (2017).
Hassan, A. U., Hodaei, H., Miri, M.-A., Khajavikhan, M. & Christodoulides, D. N. Nonlinear reversal of the PT-symmetric phase transition in a system of coupled semiconductor microring resonators. Phys. Rev. A 92, 063807 (2015).
Qin, L., Hang, C. & Huang, G. Controllable PT phase transition and asymmetric soliton scattering in atomic gases with linear and nonlinear potentials. Phys. Rev. A 99, 043832 (2019).
Laha, A., Dey, S., Gandhi, H. K., Biswas, A. & Ghosh, S. Exceptional point and toward mode-selective optical isolation. ACS Photon. 7, 967–974 (2020).
Li, T., Gao, Z. & Xia, K. Nonlinear-dissipation-induced nonreciprocal exceptional points. Opt. Express 29, 17613–17627 (2021).
McIsaac, P. R. Mode orthogonality in reciprocal and nonreciprocal waveguides. IEEE Trans. Microw. Theory Tech. 39, 1808–1816 (1991).
Lahini, Y. et al. Effect of nonlinearity on adiabatic evolution of light. Phys. Rev. Lett. 101, 193901 (2008).
Suwunnarat, S. et al. Enhanced nonlinear instabilities in photonic circuits with exceptional point degeneracies. Photon. Res. 8, 737–744 (2020).
Miri, M.-A. & Alù, A. Nonlinearity-induced PT-symmetry without material gain. New J. Phys. 18, 065001 (2016).
Shi, Y., Yu, Z. & Fan, S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photon. 9, 388–392 (2015).
Ge, L. & El-Ganainy, R. Nonlinear modal interactions in parity–time (PT) symmetric lasers. Sci. Rep. 6, 24889 (2016).
Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photon. 11, 763–773 (2017).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
Yang, Y. et al. Terahertz topological photonics for on-chip communication. Nat. Photon. 14, 446–451 (2020).
Dai, T. et al. Topologically protected quantum entanglement emitters. Nat. Photon. 16, 248–257 (2022).
Midya, B., Zhao, H. & Feng, L. Non-Hermitian photonics promises exceptional topology of light. Nat. Commun. 9, 2674 (2018).
Weimann, S. et al. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).
Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).
Pan, M., Zhao, H., Miao, P., Longhi, S. & Feng, L. Photonic zero mode in a non-Hermitian photonic lattice. Nat. Commun. 9, 1308 (2018).
Ni, X. et al. PT phase transitions of edge states at PT symmetric interfaces in non-Hermitian topological insulators. Phys. Rev. B 98, 165129 (2018).
Kremer, M. et al. Demonstration of a two-dimensional PT-symmetric crystal. Nat. Commun. 10, 435 (2019).
Ao, Y. et al. Topological phase transition in the non-Hermitian coupled resonator array. Phys. Rev. Lett. 125, 013902 (2020).
Wang, K. et al. Generating arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).
Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).
Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).
Song, Y. et al. Two-dimensional non-Hermitian skin effect in a synthetic photonic lattice. Phys. Rev. Appl. 14, 064076 (2020).
Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020).
Zhu, X. et al. Photonic non-Hermitian skin effect and non-Bloch bulk-boundary correspondence. Phys. Rev. Res. 2, 013280 (2020).
Zhu, B. et al. Anomalous single-mode lasing induced by nonlinearity and the non-Hermitian skin effect. Phys. Rev. Lett. 129, 013903 (2022).
Cerjan, A. et al. Experimental realization of a Weyl exceptional ring. Nat. Photon. 13, 623–628 (2019).
Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018).
Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).
Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).
Zeng, Y. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).
Shao, Z.-K. et al. A high-performance topological bulk laser based on band-inversion-induced reflection. Nat. Nanotechnol. 15, 67–72 (2020).
Contractor, R. et al. Scalable single-mode surface emitting laser via open-Dirac singularities. Nature 608, 692–698 (2022).
Zhao, H. et al. Non-Hermitian topological light steering. Science 365, 1163–1166 (2019).
Gorlach, M. A. et al. Far-field probing of leaky topological states in all-dielectric metasurfaces. Nat. Commun. 9, 909 (2018).
Smirnova, D. et al. Third-harmonic generation in photonic topological metasurfaces. Phys. Rev. Lett. 123, 103901 (2019).
You, J. W., Lan, Z. & Panoiu, N. C. Four-wave mixing of topological edge plasmons in graphene metasurfaces. Sci. Adv. 6, eaaz3910 (2020).
Park, S. H. et al. Observation of an exceptional point in a non-Hermitian metasurface. Nanophotonics 9, 1031–1039 (2020).
Li, Z. et al. Non-hermitian electromagnetic metasurfaces at exceptional points. Prog. Electromagn. Res. 171, 1–20 (2021).
Yang, F. et al. Non-Hermitian metasurface with non-trivial topology. Nanophotonics 11, 1159–1165 (2022).
Song, Q., Odeh, M., Zúñiga-Pérez, J., Kanté, B. & Genevet, P. Plasmonic topological metasurface by encircling an exceptional point. Science 373, 1133–1137 (2021).
Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).
Parto, M., Liu, Y. G. N., Bahari, B., Khajavikhan, M. & Christodoulides, D. N. Non-Hermitian and topological photonics: optics at an exceptional point. Nanophotonics 10, 403–423 (2021).
Xia, S. et al. Nonlinear tuning of PT symmetry and non-Hermitian topological states. Science 372, 72–76 (2021).
Soleymani, S. et al. Chiral and degenerate perfect absorption on exceptional surfaces. Nat. Commun. 13, 599 (2022).
Yulaev, A. et al. Exceptional points in lossy media lead to deep polynomial wave penetration with spatially uniform power loss. Nat. Nanotechnol. 17, 583–589 (2022).
Li, A. et al. Riemann-encircling exceptional points for efficient asymmetric polarization-locked devices. Phys. Rev. Lett. 129, 127401 (2022).
Hokmabadi, M. P., Nye, N. S., El-Ganainy, R., Christodoulides, D. N. & Khajavikhan, M. Supersymmetric laser arrays. Science 363, 623–626 (2019).
Kang, M., Chen, J. & Chong, Y. D. Chiral exceptional points in metasurfaces. Phys. Rev. A 94, 033834 (2016).
Ezawa, M. Nonlinear non-Hermitian higher-order topological laser. Phys. Rev. Res. 4, 013195 (2022).
Acknowledgements
This work has been supported by the National Natural Science Foundation of China (grant numbers 11674118 and 12074137), the State Key Laboratory of Artificial Microstructure and Mesoscopic Physics (Peking University), the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology), the Air Force Office of Scientific Research MURI programme and the Simons Foundation.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, A., Wei, H., Cotrufo, M. et al. Exceptional points and non-Hermitian photonics at the nanoscale. Nat. Nanotechnol. 18, 706–720 (2023). https://doi.org/10.1038/s41565-023-01408-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41565-023-01408-0
This article is cited by
-
Unsupervised learning of topological non-Abelian braiding in non-Hermitian bands
Nature Machine Intelligence (2024)
-
Single-cavity loss-enabled nanometrology
Nature Nanotechnology (2024)
-
Chiral transmission by an open evolution trajectory in a non-Hermitian system
Light: Science & Applications (2024)
-
Enhanced quantum coherence of plasmonic resonances with a chiral exceptional points
Communications Physics (2024)
-
Non-Hermitian dynamics and non-reciprocity of optically coupled nanoparticles
Nature Physics (2024)