Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exceptional points and non-Hermitian photonics at the nanoscale

Abstract

Exceptional points (EPs) arising in non-Hermitian systems have led to a variety of intriguing wave phenomena, and have been attracting increased interest in various physical platforms. In this Review, we highlight the latest fundamental advances in the context of EPs in various nanoscale systems, and overview the theoretical progress related to EPs, including higher-order EPs, bulk Fermi arcs and Weyl exceptional rings. We peek into EP-associated emerging technologies, in particular focusing on the influence of noise for sensing near EPs, improving the efficiency in asymmetric transmission based on EPs, optical isolators in nonlinear EP systems and novel concepts to implement EPs in topological photonics. We also discuss the constraints and limitations of the applications relying on EPs, and offer parting thoughts about promising ways to tackle them for advanced nanophotonic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EPs and their applications.
Fig. 2: PT-symmetry and EPs in nanophotonic systems.
Fig. 3: Schematics of several EP sensors and performance degradation caused by fabrication variations.
Fig. 4: EP encircling and its applications.
Fig. 5: Non-reciprocal wave propagation with nonlinearity.
Fig. 6: Non-Hermiticity in applications of topological photonics and metasurfaces.

Similar content being viewed by others

References

  1. Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    CAS  Google Scholar 

  2. Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 43, 205–214 (2002).

    Google Scholar 

  3. Mostafazadeh, A. Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum. J. Math. Phys. 43, 2814–2816 (2002).

    Google Scholar 

  4. Bender, C. M., Boettcher, S. & Meisinger, P. N. PT-symmetric quantum mechanics. J. Math. Phys. 40, 2201–2229 (1999).

    Google Scholar 

  5. Kato, T. Perturbation Teory of Linear Operators (Springer, 1966).

  6. Berry, M. V. & Wilkinson, M. Diabolical points in the spectra of triangles. Proc. R. Soc. Lond. A 392, 15–43 (1984).

    Google Scholar 

  7. Keck, F., Korsch, H. J. & Mossmann, S. Unfolding a diabolic point: a generalized crossing scenario. J. Phys. A 36, 2125–2137 (2003).

    Google Scholar 

  8. Yang, J. et al. Diabolical points in coupled active cavities with quantum emitters. Light. Sci. Appl. 9, 6 (2020).

    CAS  Google Scholar 

  9. Heiss, W. D. Repulsion of resonance states and exceptional points. Phys. Rev. E 61, 929–932 (2000).

    CAS  Google Scholar 

  10. El-Ganainy, R., Makris, K. G., Christodoulides, D. N. & Musslimani, Z. H. Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632–2634 (2007).

    CAS  Google Scholar 

  11. Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

    CAS  Google Scholar 

  12. Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Google Scholar 

  13. Kottos, T. Broken symmetry makes light work. Nat. Phys. 6, 166–167 (2010).

    CAS  Google Scholar 

  14. Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

    CAS  Google Scholar 

  15. Özdemir, Ş. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).

    Google Scholar 

  16. Hokmabadi, M. P., Schumer, A., Christodoulides, D. N. & Khajavikhan, M. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature 576, 70–74 (2019).

    Google Scholar 

  17. Song, W. et al. Breakup and recovery of topological zero modes in finite non-Hermitian optical lattices. Phys. Rev. Lett. 123, 165701 (2019).

    CAS  Google Scholar 

  18. Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photon. 11, 752–762 (2017).

    CAS  Google Scholar 

  19. El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    CAS  Google Scholar 

  20. Wang, C. et al. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys. 16, 334–340 (2020).

    CAS  Google Scholar 

  21. Zhang, F., Feng, Y., Chen, X., Ge, L. & Wan, W. Synthetic snti-PT symmetry in a single microcavity. Phys. Rev. Lett. 124, 053901 (2020).

    CAS  Google Scholar 

  22. Zhang, H. et al. Breaking anti-PT symmetry by spinning a resonator. Nano Lett. 20, 7594–7599 (2020).

    CAS  Google Scholar 

  23. Maayani, S. et al. Flying couplers above spinning resonators generate irreversible refraction. Nature 558, 569–572 (2018).

    CAS  Google Scholar 

  24. Park, S. H., Xia, S., Oh, S.-H., Avouris, P. & Low, T. Accessing the exceptional points in a graphene plasmon–vibrational mode coupled system. ACS Photon. 8, 3241–3248 (2021).

    CAS  Google Scholar 

  25. Bergman, A. et al. Observation of anti-parity–time-symmetry, phase transitions and exceptional points in an optical fibre. Nat. Commun. 12, 486 (2021).

    CAS  Google Scholar 

  26. Öztürk, F. E. et al. Observation of a non-Hermitian phase transition in an optical quantum gas. Science 372, 88–91 (2021).

    Google Scholar 

  27. Hlushchenko, A. V., Novitsky, D. V., Shcherbinin, V. I. & Tuz, V. R. Multimode PT-symmetry thresholds and third-order exceptional points in coupled dielectric waveguides with loss and gain. J. Opt. 23, 125002 (2021).

    Google Scholar 

  28. Xia, S. et al. Higher-order exceptional point and Landau–Zener Bloch oscillations in driven non-Hermitian photonic Lieb lattices. APL Photon. 6, 126106 (2021).

    CAS  Google Scholar 

  29. Laha, A., Beniwal, D., Dey, S., Biswas, A. & Ghosh, S. Third-order exceptional point and successive switching among three states in an optical microcavity. Phys. Rev. A 101, 063829 (2020).

    CAS  Google Scholar 

  30. Habler, N. & Scheuer, J. Higher-order exceptional points: a route for flat-top optical filters. Phys. Rev. A 101, 043828 (2020).

    CAS  Google Scholar 

  31. Zhou, H. et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 359, 1009–1012 (2018).

    CAS  Google Scholar 

  32. Xiao, Z. & Alù, A. Tailoring exceptional points in a hybrid PT-symmetric and anti-PT-symmetric scattering system. Nanophotonics 10, 3723–3733 (2021).

    Google Scholar 

  33. Chen, W., Yang, Q., Chen, Y. & Liu, W. Evolution and global charge conservation for polarization singularities emerging from non-Hermitian degeneracies. Proc. Natl Acad. Sci. USA 118, e2019578118 (2021).

    CAS  Google Scholar 

  34. Bauer, T. et al. Observation of optical polarization Möbius strips. Science 347, 964–966 (2015).

    CAS  Google Scholar 

  35. Miyai, E. et al. Lasers producing tailored beams. Nature 441, 946–946 (2006).

    CAS  Google Scholar 

  36. Ding, K., Ma, G., Zhang, Z. Q. & Chan, C. T. Experimental demonstration of an anisotropic exceptional point. Phys. Rev. Lett. 121, 085702 (2018).

    CAS  Google Scholar 

  37. Liao, Q. et al. Experimental measurement of the divergent quantum metric of an exceptional point. Phys. Rev. Lett. 127, 107402 (2021).

    CAS  Google Scholar 

  38. Zhang, S. M., Zhang, X. Z., Jin, L. & Song, Z. High-order exceptional points in supersymmetric arrays. Phys. Rev. A 101, 033820 (2020).

    CAS  Google Scholar 

  39. Jin, L., Wu, H. C., Wei, B.-B. & Song, Z. Hybrid exceptional point created from type-III Dirac point. Phys. Rev. B 101, 045130 (2020).

    CAS  Google Scholar 

  40. Liu, T., He, J. J., Yang, Z. & Nori, F. Higher-order Weyl-exceptional-ring semimetals. Phys. Rev. Lett. 127, 196801 (2021).

    CAS  Google Scholar 

  41. Ma, Y., Dong, B. & Lee, C. Progress of infrared guided-wave nanophotonic sensors and devices. Nano Converg. 7, 12 (2020).

    CAS  Google Scholar 

  42. Shakoor, A., Grant, J., Grande, M. & Cumming, D. R. S. Towards portable nanophotonic sensors. Sensors 19, 1715 (2019).

    Google Scholar 

  43. Karabchevsky, A., Katiyi, A., Ang, A. S. & Hazan, A. On-chip nanophotonics and future challenges. Nanophotonics 9, 3733–3753 (2020).

    CAS  Google Scholar 

  44. Sreekanth, K. V. et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 15, 621–627 (2016).

    CAS  Google Scholar 

  45. Meng, Y. et al. Optical meta-waveguides for integrated photonics and beyond. Light. Sci. Appl. 10, 235 (2021).

    CAS  Google Scholar 

  46. Oh, S.-H. et al. Nanophotonic biosensors harnessing van der Waals materials. Nat. Commun. 12, 3824 (2021).

    CAS  Google Scholar 

  47. Warning, L. A. et al. Nanophotonic approaches for chirality sensing. ACS Nano 15, 15538–15566 (2021).

    CAS  Google Scholar 

  48. Soler, M., Estevez, M. C., Cardenosa-Rubio, M., Astua, A. & Lechuga, L. M. How nanophotonic label-free biosensors can contribute to rapid and massive diagnostics of respiratory virus infections: COVID-19 case. ACS Sens. 5, 2663–2678 (2020).

    CAS  Google Scholar 

  49. Fedyanin, D. Y. & Stebunov, Y. V. All-nanophotonic NEMS biosensor on a chip. Sci. Rep. 5, 10968 (2015).

    CAS  Google Scholar 

  50. Kaushik, V. et al. On-chip nanophotonic broadband wavelength detector with 2D-electron gas: nanophotonic platform for wavelength detection in visible spectral region. Nanophotonics 11, 289–296 (2022).

    CAS  Google Scholar 

  51. Yu, X.-C. et al. Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field. Light. Sci. Appl. 7, 18003–18003 (2018).

    CAS  Google Scholar 

  52. Yan, Y.-Z. et al. Packaged silica microsphere-taper coupling system for robust thermal sensing application. Opt. Express 19, 5753–5759 (2011).

    CAS  Google Scholar 

  53. Yao, B. et al. Graphene-enhanced brillouin optomechanical microresonator for ultrasensitive gas detection. Nano Lett. 17, 4996–5002 (2017).

    CAS  Google Scholar 

  54. Katō, T. Perturbation Theory for Linear Operators (Springer, 1995).

  55. Berry, M. V. Physics of nonhermitian degeneracies. Czech. J. Phys. 54, 1039–1047 (2004).

    CAS  Google Scholar 

  56. Zhu, J. et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photon. 4, 46–49 (2010).

    CAS  Google Scholar 

  57. Wiersig, J. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett. 112, 203901 (2014).

    Google Scholar 

  58. Wiersig, J. Sensors operating at exceptional points: general theory. Phys. Rev. A 93, 033809 (2016).

    Google Scholar 

  59. Wiersig, J. Review of exceptional point-based sensors. Photon. Res. 8, 1457–1467 (2020).

    Google Scholar 

  60. Chen, W., Kaya Ozdemir, S., Zhao, G., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017).

    CAS  Google Scholar 

  61. Carlo, M. D., Leonardis, F. D., Soref, R. A. & Passaro, V. M. N. Design of a trap-assisted exceptional-surface-enhanced silicon-on-insulator particle sensor. J. Lightwave Technol. 40, 6021–6029 (2022).

    Google Scholar 

  62. Li, J. et al. Exceptional point of nanocylinder-loaded silicon microring for single nanoparticle detection. Proc. SPIE 11979, 1197903 (2022).

  63. Jiang, S. et al. Enhanced nanoparticle sensing by mode intensity in a non-reciprocally coupled microcavity. J. Appl. Phys. 131, 103106 (2022).

    CAS  Google Scholar 

  64. Zhong, Q. et al. Sensing with exceptional surfaces in order to combine sensitivity with robustness. Phys. Rev. Lett. 122, 153902 (2019).

    CAS  Google Scholar 

  65. Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017).

    CAS  Google Scholar 

  66. Farhat, M., Yang, M., Ye, Z. & Chen, P.-Y. PT-symmetric absorber-laser enables electromagnetic sensors with unprecedented sensitivity. ACS Photon.7, 2080–2088 (2020).

    CAS  Google Scholar 

  67. Park, J.-H. et al. Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nat. Phys. 16, 462–468 (2020).

    CAS  Google Scholar 

  68. Jiang, H. et al. Exceptional points and enhanced nanoscale sensing with a plasmon–exciton hybrid system. Photon. Res. 10, 557–563 (2022).

    Google Scholar 

  69. Feng, Z. & Sun, X. Giant enhancement of rotation sensing with PT-symmetric circular bragg lasers. Phys. Rev. Appl. 13, 054078 (2020).

    CAS  Google Scholar 

  70. Li, W. et al. Exceptional-surface-enhanced rotation sensing with robustness in a whispering-gallery-mode microresonator. Phys. Rev. A 104, 033505 (2021).

    CAS  Google Scholar 

  71. Lai, Y.-H., Lu, Y.-K., Suh, M.-G., Yuan, Z. & Vahala, K. Observation of the exceptional-point-enhanced Sagnac effect. Nature 576, 65–69 (2019).

    CAS  Google Scholar 

  72. Zhang, H., Peng, M., Xu, X.-W. & Jing, H. Anti-PT-symmetric Kerr gyroscope. Chin. Phys. B 31, 14215–014215 (2022).

    Google Scholar 

  73. Wu, Y., Zhou, P., Li, T., Wan, W. & Zou, Y. High-order exceptional point based optical sensor. Opt. Express 29, 6080–6091 (2021).

    Google Scholar 

  74. Soper, A., Leefmans, C., Parto, M., Williams, J. & Marandi, A. Experimental realization of a 64th order exceptional point on a time-multiplexed photonic resonator network. Proc. SPIE https://doi.org/10.1117/12.2613404 (2022).

  75. Khanbekyan, M. & Scheel, S. Enantiomer-discriminating sensing using optical cavities at exceptional points. Phys. Rev. A 105, 053711 (2022).

    CAS  Google Scholar 

  76. Chen, L. Measuring Newtonian constant of gravitation at an exceptional point in an optomechanical system. Opt. Commun. 520, 128534 (2022).

    CAS  Google Scholar 

  77. Mortensen, N. A. et al. Fluctuations and noise-limited sensing near the exceptional point of parity–time-symmetric resonator systems. Optica 5, 1342–1346 (2018).

    CAS  Google Scholar 

  78. Xiao, Z., Li, H., Kottos, T. & Alù, A. Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point. Phys. Rev. Lett. 123, 213901 (2019).

    CAS  Google Scholar 

  79. Wang, H., Lai, Y.-H., Yuan, Z., Suh, M.-G. & Vahala, K. Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope. Nat. Commun. 11, 1610 (2020).

    Google Scholar 

  80. Wiersig, J. Prospects and fundamental limits in exceptional point-based sensing. Nat. Commun. 11, 2454 (2020).

    CAS  Google Scholar 

  81. Kononchuk, R., Feinberg, J., Knee, J. & Kottos, T. Enhanced avionic sensing based on Wigners cusp anomalies. Sci. Adv. 7, eabg8118 (2021).

    CAS  Google Scholar 

  82. Wiersig, J. Robustness of exceptional-point-based sensors against parametric noise: the role of Hamiltonian and Liouvillian degeneracies. Phys. Rev. A 101, 053846 (2020).

    CAS  Google Scholar 

  83. Duggan, R., A. Mann, S. & Alù, A. Limitations of sensing at an exceptional point. ACS Photon. 9, 1554–1566 (2022).

    CAS  Google Scholar 

  84. Wolff, C., Tserkezis, C. & Mortensen, N. A. On the time evolution at a fluctuating exceptional point. Nanophotonics 8, 1319–1326 (2019).

    Google Scholar 

  85. Langbein, W. No exceptional precision of exceptional-point sensors. Phys. Rev. A 98, 023805 (2018).

    CAS  Google Scholar 

  86. Grant, M. J. & Digonnet, M. J. F. Rotation sensitivity and shot-noise-limited detection in an exceptional-point coupled-ring gyroscope. Opt. Lett. 46, 2936–2939 (2021).

    Google Scholar 

  87. Kim, J. et al. Practical lineshape of a laser operating near an exceptional point. Sci. Rep. 11, 6164 (2021).

    CAS  Google Scholar 

  88. Lau, H.-K. & Clerk, A. A. Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun. 9, 4320 (2018).

    Google Scholar 

  89. Chen, C., Jin, L. & Liu, R.-B. Sensitivity of parameter estimation near the exceptional point of a non-Hermitian system. New J. Phys. 21, 083002 (2019).

    CAS  Google Scholar 

  90. Peters, K. J. H. & Rodriguez, S. R. K. Exceptional precision of a nonlinear optical sensor at a square-root singularity. Phys. Rev. Lett. 129, 013901 (2022).

    CAS  Google Scholar 

  91. Smith, D. D., Chang, H., Mikhailov, E. E. & Shahriar, S. M. Beyond the Petermann limit: prospect of increasing sensor precision near exceptional points. Phys. Rev. A 106, 013520 (2022).

    CAS  Google Scholar 

  92. Dembowski, C. et al. Encircling an exceptional point. Phys. Rev. E 69, 056216 (2004).

    CAS  Google Scholar 

  93. Gao, T. et al. Observation of non-Hermitian degeneracies in a chaotic exciton–polariton billiard. Nature 526, 554–558 (2015).

    CAS  Google Scholar 

  94. Milburn, T. J. et al. General description of quasiadiabatic dynamical phenomena near exceptional points. Phys. Rev. A 92, 052124 (2015).

    Google Scholar 

  95. Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016).

    CAS  Google Scholar 

  96. Zhang, X.-L., Jiang, T. & Chan, C. T. Dynamically encircling an exceptional point in anti-parity–time symmetric systems: asymmetric mode switching for symmetry-broken modes. Light. Sci. Appl. 8, 88 (2019).

    Google Scholar 

  97. Yoon, J. W. et al. Time-asymmetric loop around an exceptional point over the full optical communications band. Nature 562, 86–90 (2018).

    CAS  Google Scholar 

  98. Liu, Q. et al. Efficient mode transfer on a compact silicon chip by encircling moving exceptional points. Phys. Rev. Lett. 124, 153903 (2020).

    CAS  Google Scholar 

  99. Li, A. et al. Hamiltonian hopping for efficient chiral mode switching in encircling exceptional points. Phys. Rev. Lett. 125, 187403 (2020).

    CAS  Google Scholar 

  100. Shu, X. et al. Fast encirclement of an exceptional point for highly efficient and compact chiral mode converters. Nat. Commun. 13, 2123 (2022).

    CAS  Google Scholar 

  101. Wei, Y. et al. Anti-parity–time symmetry enabled on-chip chiral polarizer. Photon. Res. 10, 76–83 (2022).

    CAS  Google Scholar 

  102. Zhang, X.-L. & Chan, C. T. Dynamically encircling exceptional points in a three-mode waveguide system. Commun. Phys. 2, 63 (2019).

    Google Scholar 

  103. Yu, F., Zhang, X.-L., Tian, Z.-N., Chen, Q.-D. & Sun, H.-B. General rules governing the dynamical encircling of an arbitrary number of exceptional points. Phys. Rev. Lett. 127, 253901 (2021).

    CAS  Google Scholar 

  104. Hassan, A. U. et al. Chiral state conversion without encircling an exceptional point. Phys. Rev. A 96, 052129 (2017).

    Google Scholar 

  105. Liu, Q., Liu, J., Zhao, D. & Wang, B. On-chip experiment for chiral mode transfer without enclosing an exceptional point. Phys. Rev. A 103, 023531 (2021).

    CAS  Google Scholar 

  106. Nasari, H. et al. Observation of chiral state transfer without encircling an exceptional point. Nature 605, 256–261 (2022).

    CAS  Google Scholar 

  107. Khurgin, J. B. et al. Emulating exceptional-point encirclements using imperfect (leaky) photonic components: asymmetric mode-switching and omni-polarizer action. Optica 8, 563–569 (2021).

    Google Scholar 

  108. Schumer, A. et al. Topological modes in a laser cavity through exceptional state transfer. Science 375, 884–888 (2022).

    CAS  Google Scholar 

  109. Zhang, J.-Q. et al. Topological optomechanical amplifier in synthetic PT-symmetry. Nanophotonics 11, 1149–1158 (2022).

    Google Scholar 

  110. Wang, H., Assawaworrarit, S. & Fan, S. Dynamics for encircling an exceptional point in a nonlinear non-Hermitian system. Opt. Lett. 44, 638–641 (2019).

    Google Scholar 

  111. Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).

    CAS  Google Scholar 

  112. Wojcik, C. C., Wang, K., Dutt, A., Zhong, J. & Fan, S. Eigenvalue topology of non-Hermitian band structures in two and three dimensions. Phys. Rev. B 106, L161401 (2022).

    CAS  Google Scholar 

  113. Konotop, V. V., Yang, J. & Zezyulin, D. A. Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016).

    Google Scholar 

  114. Liu, Z. et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett. 123, 253901 (2019).

    CAS  Google Scholar 

  115. Hu, G. et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nat. Photon. 13, 467–472 (2019).

    CAS  Google Scholar 

  116. Choi, Y., Hahn, C., Yoon, J. W., Song, S. H. & Berini, P. Extremely broadband, on-chip optical nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps near exceptional points. Nat. Commun. 8, 14154 (2017).

    CAS  Google Scholar 

  117. Ramezanpour, S. & Bogdanov, A. Tuning exceptional points with Kerr nonlinearity. Phys. Rev. A 103, 043510 (2021).

    CAS  Google Scholar 

  118. Suwunnarat, S. et al. Non-linear coherent perfect absorption in the proximity of exceptional points. Commun. Phys. 5, 5 (2022).

    Google Scholar 

  119. Assawaworrarit, S., Yu, X. & Fan, S. Robust wireless power transfer using a nonlinear parity–time-symmetric circuit. Nature 546, 387–390 (2017).

    CAS  Google Scholar 

  120. Hassan, A. U., Hodaei, H., Miri, M.-A., Khajavikhan, M. & Christodoulides, D. N. Nonlinear reversal of the PT-symmetric phase transition in a system of coupled semiconductor microring resonators. Phys. Rev. A 92, 063807 (2015).

    Google Scholar 

  121. Qin, L., Hang, C. & Huang, G. Controllable PT phase transition and asymmetric soliton scattering in atomic gases with linear and nonlinear potentials. Phys. Rev. A 99, 043832 (2019).

    CAS  Google Scholar 

  122. Laha, A., Dey, S., Gandhi, H. K., Biswas, A. & Ghosh, S. Exceptional point and toward mode-selective optical isolation. ACS Photon. 7, 967–974 (2020).

    CAS  Google Scholar 

  123. Li, T., Gao, Z. & Xia, K. Nonlinear-dissipation-induced nonreciprocal exceptional points. Opt. Express 29, 17613–17627 (2021).

    Google Scholar 

  124. McIsaac, P. R. Mode orthogonality in reciprocal and nonreciprocal waveguides. IEEE Trans. Microw. Theory Tech. 39, 1808–1816 (1991).

    Google Scholar 

  125. Lahini, Y. et al. Effect of nonlinearity on adiabatic evolution of light. Phys. Rev. Lett. 101, 193901 (2008).

    CAS  Google Scholar 

  126. Suwunnarat, S. et al. Enhanced nonlinear instabilities in photonic circuits with exceptional point degeneracies. Photon. Res. 8, 737–744 (2020).

    CAS  Google Scholar 

  127. Miri, M.-A. & Alù, A. Nonlinearity-induced PT-symmetry without material gain. New J. Phys. 18, 065001 (2016).

    Google Scholar 

  128. Shi, Y., Yu, Z. & Fan, S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photon. 9, 388–392 (2015).

    CAS  Google Scholar 

  129. Ge, L. & El-Ganainy, R. Nonlinear modal interactions in parity–time (PT) symmetric lasers. Sci. Rep. 6, 24889 (2016).

    CAS  Google Scholar 

  130. Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photon. 11, 763–773 (2017).

    CAS  Google Scholar 

  131. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    CAS  Google Scholar 

  132. Yang, Y. et al. Terahertz topological photonics for on-chip communication. Nat. Photon. 14, 446–451 (2020).

    CAS  Google Scholar 

  133. Dai, T. et al. Topologically protected quantum entanglement emitters. Nat. Photon. 16, 248–257 (2022).

    CAS  Google Scholar 

  134. Midya, B., Zhao, H. & Feng, L. Non-Hermitian photonics promises exceptional topology of light. Nat. Commun. 9, 2674 (2018).

    Google Scholar 

  135. Weimann, S. et al. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).

    CAS  Google Scholar 

  136. Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).

    Google Scholar 

  137. Pan, M., Zhao, H., Miao, P., Longhi, S. & Feng, L. Photonic zero mode in a non-Hermitian photonic lattice. Nat. Commun. 9, 1308 (2018).

    Google Scholar 

  138. Ni, X. et al. PT phase transitions of edge states at PT symmetric interfaces in non-Hermitian topological insulators. Phys. Rev. B 98, 165129 (2018).

    CAS  Google Scholar 

  139. Kremer, M. et al. Demonstration of a two-dimensional PT-symmetric crystal. Nat. Commun. 10, 435 (2019).

    Google Scholar 

  140. Ao, Y. et al. Topological phase transition in the non-Hermitian coupled resonator array. Phys. Rev. Lett. 125, 013902 (2020).

    CAS  Google Scholar 

  141. Wang, K. et al. Generating arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).

    CAS  Google Scholar 

  142. Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).

    CAS  Google Scholar 

  143. Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

    CAS  Google Scholar 

  144. Song, Y. et al. Two-dimensional non-Hermitian skin effect in a synthetic photonic lattice. Phys. Rev. Appl. 14, 064076 (2020).

    CAS  Google Scholar 

  145. Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020).

    CAS  Google Scholar 

  146. Zhu, X. et al. Photonic non-Hermitian skin effect and non-Bloch bulk-boundary correspondence. Phys. Rev. Res. 2, 013280 (2020).

    CAS  Google Scholar 

  147. Zhu, B. et al. Anomalous single-mode lasing induced by nonlinearity and the non-Hermitian skin effect. Phys. Rev. Lett. 129, 013903 (2022).

    CAS  Google Scholar 

  148. Cerjan, A. et al. Experimental realization of a Weyl exceptional ring. Nat. Photon. 13, 623–628 (2019).

    CAS  Google Scholar 

  149. Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018).

    Google Scholar 

  150. Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Google Scholar 

  151. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    CAS  Google Scholar 

  152. Zeng, Y. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).

    CAS  Google Scholar 

  153. Shao, Z.-K. et al. A high-performance topological bulk laser based on band-inversion-induced reflection. Nat. Nanotechnol. 15, 67–72 (2020).

    CAS  Google Scholar 

  154. Contractor, R. et al. Scalable single-mode surface emitting laser via open-Dirac singularities. Nature 608, 692–698 (2022).

    CAS  Google Scholar 

  155. Zhao, H. et al. Non-Hermitian topological light steering. Science 365, 1163–1166 (2019).

    CAS  Google Scholar 

  156. Gorlach, M. A. et al. Far-field probing of leaky topological states in all-dielectric metasurfaces. Nat. Commun. 9, 909 (2018).

    Google Scholar 

  157. Smirnova, D. et al. Third-harmonic generation in photonic topological metasurfaces. Phys. Rev. Lett. 123, 103901 (2019).

    CAS  Google Scholar 

  158. You, J. W., Lan, Z. & Panoiu, N. C. Four-wave mixing of topological edge plasmons in graphene metasurfaces. Sci. Adv. 6, eaaz3910 (2020).

    CAS  Google Scholar 

  159. Park, S. H. et al. Observation of an exceptional point in a non-Hermitian metasurface. Nanophotonics 9, 1031–1039 (2020).

    Google Scholar 

  160. Li, Z. et al. Non-hermitian electromagnetic metasurfaces at exceptional points. Prog. Electromagn. Res. 171, 1–20 (2021).

    CAS  Google Scholar 

  161. Yang, F. et al. Non-Hermitian metasurface with non-trivial topology. Nanophotonics 11, 1159–1165 (2022).

    CAS  Google Scholar 

  162. Song, Q., Odeh, M., Zúñiga-Pérez, J., Kanté, B. & Genevet, P. Plasmonic topological metasurface by encircling an exceptional point. Science 373, 1133–1137 (2021).

    CAS  Google Scholar 

  163. Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).

    CAS  Google Scholar 

  164. Parto, M., Liu, Y. G. N., Bahari, B., Khajavikhan, M. & Christodoulides, D. N. Non-Hermitian and topological photonics: optics at an exceptional point. Nanophotonics 10, 403–423 (2021).

    Google Scholar 

  165. Xia, S. et al. Nonlinear tuning of PT symmetry and non-Hermitian topological states. Science 372, 72–76 (2021).

    CAS  Google Scholar 

  166. Soleymani, S. et al. Chiral and degenerate perfect absorption on exceptional surfaces. Nat. Commun. 13, 599 (2022).

    CAS  Google Scholar 

  167. Yulaev, A. et al. Exceptional points in lossy media lead to deep polynomial wave penetration with spatially uniform power loss. Nat. Nanotechnol. 17, 583–589 (2022).

    CAS  Google Scholar 

  168. Li, A. et al. Riemann-encircling exceptional points for efficient asymmetric polarization-locked devices. Phys. Rev. Lett. 129, 127401 (2022).

    CAS  Google Scholar 

  169. Hokmabadi, M. P., Nye, N. S., El-Ganainy, R., Christodoulides, D. N. & Khajavikhan, M. Supersymmetric laser arrays. Science 363, 623–626 (2019).

    CAS  Google Scholar 

  170. Kang, M., Chen, J. & Chong, Y. D. Chiral exceptional points in metasurfaces. Phys. Rev. A 94, 033834 (2016).

    Google Scholar 

  171. Ezawa, M. Nonlinear non-Hermitian higher-order topological laser. Phys. Rev. Res. 4, 013195 (2022).

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (grant numbers 11674118 and 12074137), the State Key Laboratory of Artificial Microstructure and Mesoscopic Physics (Peking University), the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology), the Air Force Office of Scientific Research MURI programme and the Simons Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Wei Qiu, Andrea Alù or Lin Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Wei, H., Cotrufo, M. et al. Exceptional points and non-Hermitian photonics at the nanoscale. Nat. Nanotechnol. 18, 706–720 (2023). https://doi.org/10.1038/s41565-023-01408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01408-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing