Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherent magnon-induced domain-wall motion in a magnetic insulator channel


Advancing the development of spin-wave devices requires high-quality low-damping magnetic materials where magnon spin currents can efficiently propagate and effectively interact with local magnetic textures. Here we show that magnetic domain walls can modulate spin-wave transport in perpendicularly magnetized channels of Bi-doped yttrium iron garnet. Conversely, we demonstrate that the magnon spin current can drive domain-wall motion in the Bi-doped yttrium iron garnet channel device by means of magnon spin-transfer torque. The domain wall can be reliably moved over 15–20 µm distances at zero applied magnetic field by a magnon spin current excited by a radio-frequency pulse as short as 1 ns. The required energy for driving the domain-wall motion is orders of magnitude smaller than those reported for metallic systems. These results facilitate low-switching-energy magnonic devices and circuits where magnetic domains can be efficiently reconfigured by magnon spin currents flowing within magnetic channels.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of magnon–DW mutual interaction and characterization of the Bi-YIG thin-film sample.
Fig. 2: Magnon transmission spectrum on the Bi-YIG channel device with and without the presence of DW.
Fig. 3: Magnon-induced DW motion.
Fig. 4: Magnon-induced DW motion power threshold dependence on pulse width and carrier frequency of pulse.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.


  1. Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D. 43, 264001 (2010).

  2. Serga, A. A., Chumak, A. V. & Hillebrands, B. YIG magnonics. J. Phys. D 43, 264002 (2010).

  3. Khitun, A., Bao, M. & Wang, K. L. Magnonic logic circuits. J. Phys. D 43, 264005 (2010).

  4. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  CAS  Google Scholar 

  5. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  Google Scholar 

  6. Csaba, G., Papp, Á. & Porod, W. Perspectives of using spin waves for computing and signal processing. Phys. Lett. A 381, 1471–1476 (2017).

    Article  CAS  Google Scholar 

  7. Sheng, L., Chen, J., Wang, H. & Yu, H. Magnonics based on thin-film iron garnets. J. Phys. Soc. Jpn 90, 081005 (2021).

    Article  Google Scholar 

  8. Yan, P., Wang, X. S. & Wang, X. R. All-magnonic spin-transfer torque and domain wall propagation. Phys. Rev. Lett. 107, 177207 (2011).

    Article  CAS  Google Scholar 

  9. Kovalev, A. A. & Tserkovnyak, Y. Thermomagnonic spin transfer and Peltier effects in insulating magnets. Europhys. Lett. 97, 67002 (2012).

    Article  Google Scholar 

  10. Hinzke, D. & Nowak, U. Domain wall motion by the magnonic spin Seebeck effect. Phys. Rev. Lett. 107, 027205 (2011).

    Article  CAS  Google Scholar 

  11. Wang, Y. et al. Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator. Science 366, 1125–1128 (2019).

    Article  CAS  Google Scholar 

  12. Jiang, W. et al. Direct imaging of thermally driven domain wall motion in magnetic insulators. Phys. Rev. Lett. 110, 177202 (2013).

    Article  Google Scholar 

  13. Han, J., Zhang, P., Hou, J. T., Siddiqui, S. A. & Liu, L. Mutual control of coherent spin waves and magnetic domain walls in a magnonic device. Science 366, 1121–1125 (2019).

    Article  CAS  Google Scholar 

  14. Pirro, P. et al. Experimental observation of the interaction of propagating spin waves with Néel domain walls in a Landau domain structure. Appl. Phys. Lett. 106, 232405 (2015).

    Article  Google Scholar 

  15. Sheng, L. et al. Spin wave propagation in a ferrimagnetic thin film with perpendicular magnetic anisotropy. Appl. Phys. Lett. 117, 232407 (2020).

    Article  CAS  Google Scholar 

  16. Wojewoda, O. et al. Propagation of spin waves through a Néel domain wall. Appl. Phys. Lett. 117, 022405 (2020).

    Article  CAS  Google Scholar 

  17. Mikhailov, A. V. & Yaremchuk, A. I. Forced motion of a domain wall in the field of a spin wave. JETP Lett. 39, 354–357 (1984).

    Google Scholar 

  18. Kishine, J.-I. & Ovchinnikov, A. S. Adiabatic and nonadiabatic spin-transfer torques in the current-driven magnetic domain wall motion. Phys. Rev. B 81, 134405 (2010).

    Article  Google Scholar 

  19. Burrowes, C. et al. Non-adiabatic spin-torques in narrow magnetic domain walls. Nat. Phys. 6, 17–21 (2010).

    Article  CAS  Google Scholar 

  20. Caretta, L. et al. Relativistic kinematics of a magnetic soliton. Science 370, 1438–1442 (2020).

    Article  CAS  Google Scholar 

  21. Wang, X.-G., Guo, G.-H., Nie, Y.-Z., Zhang, G.-F. & Li, Z.-X. Domain wall motion induced by the magnonic spin current. Phys. Rev. B 86, 054445 (2012).

    Article  Google Scholar 

  22. Chang, L.-J. et al. Ferromagnetic domain walls as spin wave filters and the interplay between domain walls and spin waves. Sci. Rep. 8, 3910 (2018).

    Article  Google Scholar 

  23. Wang, X.-G., Guo, G.-H., Zhang, G.-F., Nie, Y.-Z. & Xia, Q.-L. Spin-wave resonance reflection and spin-wave induced domain wall displacement. J. Appl. Phys. 113, 213904 (2013).

    Article  Google Scholar 

  24. Han, D.-S. et al. Magnetic domain-wall motion by propagating spin waves. Appl. Phys. Lett. 94, 112502 (2009).

    Article  Google Scholar 

  25. Seo, S.-M., Lee, H.-W., Kohno, H. & Lee, K.-J. Magnetic vortex wall motion driven by spin waves. Appl. Phys. Lett. 98, 012514 (2011).

    Article  Google Scholar 

  26. Kim, J. S. et al. Interaction between propagating spin waves and domain walls on a ferromagnetic nanowire. Phys. Rev. B 85, 174428 (2012).

    Article  Google Scholar 

  27. Risinggård, V., Tveten, E. G., Brataas, A. & Linder, J. Equations of motion and frequency dependence of magnon-induced domain wall motion. Phys. Rev. B 96, 174441 (2017).

    Article  Google Scholar 

  28. Kim, K.-W. et al. Unidirectional magnon-driven domain wall motion due to the interfacial Dzyaloshinskii-Moriya interaction. Phys. Rev. Lett. 122, 147202 (2019).

    Article  CAS  Google Scholar 

  29. Torrejon, J. et al. Unidirectional thermal effects in current-induced domain wall motion. Phys. Rev. Lett. 109, 106601 (2012).

    Article  CAS  Google Scholar 

  30. Shokr, Y. A. et al. Steering of magnetic domain walls by single ultrashort laser pulses. Phys. Rev. B 99, 214404 (2019).

    Article  CAS  Google Scholar 

  31. Woo, S., Delaney, T. & Beach, G. S. D. Magnetic domain wall depinning assisted by spin wave bursts. Nat. Phys. 13, 448–454 (2017).

    Article  CAS  Google Scholar 

  32. Hämäläinen, S. J., Madami, M., Qin, H., Gubbiotti, G. & van Dijken, S. Control of spin-wave transmission by a programmable domain wall. Nat. Commun. 9, 4853 (2018).

    Article  Google Scholar 

  33. Banerjee, C. et al. Magnonic band structure in a Co/Pd stripe domain system investigated by Brillouin light scattering and micromagnetic simulations. Phys. Rev. B 96, 024421 (2017).

    Article  Google Scholar 

  34. Liu, C. et al. Current-controlled propagation of spin waves in antiparallel, coupled domains. Nat. Nanotechnol. 14, 691–697 (2019).

    Article  CAS  Google Scholar 

  35. Soumah, L. et al. Ultra-low damping insulating magnetic thin films get perpendicular. Nat. Commun. 9, 3355 (2018).

    Article  Google Scholar 

  36. Fakhrul, T. et al. Magneto-optical Bi:YIG films with high figure of merit for nonreciprocal photonics. Adv. Opt. Mater. 7, 1900056 (2019).

    Article  Google Scholar 

  37. Callen, H. On growth-induced anisotropy in garnet crystals. Mater. Res. Bull. 6, 931–938 (1971).

    Article  CAS  Google Scholar 

  38. Kumar, R., Samantaray, B. & Hossain, Z. Ferromagnetic resonance studies of strain tuned Bi:YIG films. J. Phys. Condens. Matter 31, 435802 (2019).

  39. Bailleul, M., Olligs, D., Fermon, C. & Demokritov, S. O. J. E. L. Spin waves propagation and confinement in conducting films at the micrometer scale. Europhys. Lett. 56, 741–747 (2001).

    Article  CAS  Google Scholar 

  40. Vlaminck, V. & Bailleul, M. Spin-wave transduction at the submicrometer scale: experiment and modeling. Phys. Rev. B 81, 014425 (2010).

    Article  Google Scholar 

  41. Collet, M. et al. Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque. Nat. Commun. 7, 10377 (2016).

    Article  CAS  Google Scholar 

  42. Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & van Wees, B. J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).

    Article  Google Scholar 

  43. Oh, S.-H. et al. Coherent terahertz spin-wave emission associated with ferrimagnetic domain wall dynamics. Phys. Rev. B 96, 100407 (2017).

    Article  Google Scholar 

  44. Cheng, Y., Chen, K. & Zhang, S. Giant magneto-spin-Seebeck effect and magnon transfer torques in insulating spin valves. Appl. Phys. Lett. 112, 052405 (2018).

    Article  Google Scholar 

  45. Wuth, C., Lendecke, P. & Meier, G. Temperature-dependent dynamics of stochastic domain-wall depinning in nanowires. J. Phys. Condens. Matter 24, 024207 (2012).

  46. Nguyen, V. D. et al. Elementary depinning processes of magnetic domain walls under fields and currents. Sci. Rep. 4, 6509 (2014).

    Article  CAS  Google Scholar 

  47. Avci, C. O. et al. Interface-driven chiral magnetism and current-driven domain walls in insulating magnetic garnets. Nat. Nanotechnol. 14, 561–566 (2019).

    Article  CAS  Google Scholar 

  48. Caretta, L. et al. Interfacial Dzyaloshinskii-Moriya interaction arising from rare-earth orbital magnetism in insulating magnetic oxides. Nat. Commun. 11, 1090 (2020).

    Article  CAS  Google Scholar 

  49. Duan, Z. et al. Nanowire spin torque oscillator driven by spin orbit torques. Nat. Commun. 5, 5616 (2014).

    Article  CAS  Google Scholar 

  50. Demidov, V. E. et al. Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 11, 1028–1031 (2012).

    Article  CAS  Google Scholar 

Download references


C.A.R., M.J.G., Y.F. and T.F. acknowledge support from SMART, one of seven centres of nCORE, a Semiconductor Research Corporation program, sponsored by the National Institute of Standards and Technology (NIST), and the National Science Foundation under award DMR 1808190. S.N. was supported by Fujikura. L.L. acknowledges financial support from the National Science Foundation under award DMR-2104912. Shared facilities of CMSE (MRSEC DMR-1419807) were used. We thank S.-K. Kim for helpful discussions on spin wave dispersion in the Bi-YIG material.

Author information

Authors and Affiliations



T.F. grew the Bi-YIG material and performed the X-ray diffraction characterization. J.F. fabricated the devices and measured the vibrating sample magnetometry data. Y.F. carried out the microwave FMR and spin-wave transmission experiments. Y.F. and M.J.G. carried out the spin-wave-induced DW motion experiment. J.T.H. performed the wire bonding and helped with the microwave experiments. S.N. performed the micromagnetic modelling. C.A.R. and L.L. guided the research. Y.F., M.J.G. and C.A.R. wrote the paper with input from all the co-authors.

Corresponding authors

Correspondence to Luqiao Liu or Caroline A. Ross.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Philipp Pirro and Morgan Trassin for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Notes 1–11.

Supplementary Video 1

Magnon-induced DW motion from nanosecond RF pulses. The top-right antenna injects sequential 1 ns pulses at 4.35 GHz with increasing power (indicated in dBm on the bottom-right scale bar). A DW is pinned under the bottom-left antenna and is propagated towards the right injector antenna after the 19 dBm RF pulse.

Supplementary Video 2

Magnon-induced progressive DW motion. A video of Fig. 3b showing progressive DW motion from sequential 1 ms pulses at 4.1 GHz. The bottom-right scale bar indicates the power of the RF pulse in dBm.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Gross, M.J., Fakhrul, T. et al. Coherent magnon-induced domain-wall motion in a magnetic insulator channel. Nat. Nanotechnol. 18, 1000–1004 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research