Abstract
Hysteretic switching of domain states is a salient characteristic of all ferroic materials and the foundation for their multifunctional applications. Ferro-rotational order is emerging as a type of ferroic order that features structural rotations, but control over state switching remains elusive due to its invariance under both time reversal and spatial inversion. Here we demonstrate electrical switching of ferro-rotational domain states in the charge-density-wave phases of nanometre-thick 1T-TaS2 crystals. Cooling from the high-symmetry phase to the ferro-rotational phase under an external electric field induces domain state switching and domain wall formation, which is realized in a simple two-terminal configuration using a volt-scale bias. Although the electric field does not couple with the order due to symmetry mismatch, it drives domain wall propagation to give rise to reversible, durable and non-volatile isothermal state switching at room temperature. These results offer a route to the manipulation of ferro-rotational order and its nanoelectronic applications.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
Additional data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.
References
Wadhawan, V. Introduction to Ferroic Materials 1st edn (CRC, 2000).
Cheong, S.-W., Talbayev, D., Kiryukhin, V. & Saxena, A. Broken symmetries, non-reciprocity, and multiferroicity. npj Quant. Mater. 3, 19 (2018).
Van Aken, B. B., Rivera, J.-P., Schmid, H. & Fiebig, M. Observation of ferrotoroidic domains. Nature 449, 702–705 (2007).
Spaldin, N. A., Fiebig, M. & Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter 20, 434203 (2008).
Zimmermann, A. S., Meier, D. & Fiebig, M. Ferroic nature of magnetic toroidal order. Nat. Commun. 5, 4796 (2014).
Hlinka, J., Privratska, J., Ondrejkovic, P. & Janovec, V. Symmetry guide to ferroaxial transitions. Phys. Rev. Lett. 116, 177602 (2016).
Fiebig, M. Order! order!! Nat. Phys. 16, 9–10 (2020).
Gopalan, V. & Litvin, D. B. Rotation-reversal symmetries in crystals and handed structures. Nat. Mater. 10, 376–381 (2011).
Johnson, R. D. et al. Cu3Nb2O8: a multiferroic with chiral coupling to the crystal structure. Phys. Rev. Lett. 107, 137205 (2011).
Johnson, R. D. et al. Giant improper ferroelectricity in the ferroaxial magnet CaMn7O12. Phys. Rev. Lett. 108, 067201 (2012).
Jin, W. et al. Observation of a ferro-rotational order coupled with second-order nonlinear optical fields. Nat. Phys. 16, 42–46 (2020).
Luo, X. et al. Ultrafast modulations and detection of a ferro-rotational charge density wave using time-resolved electric quadrupole second harmonic generation. Phys. Rev. Lett. 127, 126401 (2021).
Hayashida, T. et al. Visualization of ferroaxial domains in an order–disorder type ferroaxial crystal. Nat. Commun. 11, 4582 (2020).
Hayashida, T. et al. Phase transition and domain formation in ferroaxial crystals. Phys. Rev. Mater. 5, 124409 (2021).
Cheong, S.-W., Lim, S., Du, K. & Huang, F.-T. Permutable SOS (symmetry operational similarity). npj Quant. Mater. 6, 58 (2021).
Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).
Damodaran, A. R. et al. Phase coexistence and electric-field control of toroidal order in oxide superlattices. Nat. Mater. 16, 1003–1009 (2017).
Fichera, B. T. et al. Second harmonic generation as a probe of broken mirror symmetry. Phys. Rev. B 101, 241106 (2020).
Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 7, 960–965 (2008).
Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).
Yoshida, M. et al. Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2. Sci. Rep. 4, 7302 (2014).
Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).
Yoshida, M., Suzuki, R., Zhang, Y., Nakano, M. & Iwasa, Y. Memristive phase switching in two-dimensional 1T-TaS2 crystals. Sci. Adv. 1, e1500606 (2015).
Cho, D. et al. Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS2. Nat. Commun. 7, 10453 (2016).
Ma, L. et al. A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS2. Nat. Commun. 7, 10956 (2016).
Vaskivskyi, I. et al. Fast electronic resistance switching involving hidden charge density wave states. Nat. Commun. 7, 11442 (2016).
Qiao, S. et al. Mottness collapse in 1T-TaS2−xSex transition-metal dichalcogenide: an interplay between localized and itinerant orbitals. Phys. Rev. X 7, 041054 (2017).
Fazekas, P. & Tosatti, E. Charge carrier localization in pure and doped 1T-TaS2. Physica B+C 99, 183–187 (1980).
Wilson, J., Salvo, F. D. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).
Thomson, R. E., Burk, B., Zettl, A. & Clarke, J. Scanning tunneling microscopy of the charge-density-wave structure in 1T-TaS2. Phys. Rev. B 49, 16899–16916 (1994).
Zong, A. et al. Ultrafast manipulation of mirror domain walls in a charge density wave. Sci. Adv. 4, eaau5501 (2018).
Ishioka, J. et al. Chiral charge-density waves. Phys. Rev. Lett. 105, 176401 (2010).
Xu, S.-Y. et al. Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide. Nature 578, 545–549 (2020).
Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).
Sung, S. H. et al. Two-dimensional charge order stabilized in clean polytype heterostructures. Nat. Commun. 13, 413 (2022).
Yang, H. F. et al. Visualization of chiral electronic structure and anomalous optical response in a material with chiral charge density waves. Phys. Rev. Lett. 129, 156401 (2022).
Song, X. et al. Atomic-scale visualization of chiral charge density wave superlattices and their reversible switching. Nat. Commun. 13, 1843 (2022).
Wu, X. L. & Lieber, C. M. Hexagonal domain-like charge density wave phase of TaS2 determined by scanning tunneling microscopy. Science 243, 1703–1705 (1989).
Spijkerman, A., de Boer, J. L., Meetsma, A., Wiegers, G. A. & van Smaalen, S. X-ray crystal-structure refinement of the nearly commensurate phase of 1T-TaS2 in (3 + 2)-dimensional superspace. Phys. Rev. B 56, 13757–13767 (1997).
Park, J. W., Cho, G. Y., Lee, J. & Yeom, H. W. Emergent honeycomb network of topological excitations in correlated charge density wave. Nat. Commun. 10, 4038 (2019).
Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).
Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).
McGilly, L. J., Yudin, P., Feigl, L., Tagantsev, A. K. & Setter, N. Controlling domain wall motion in ferroelectric thin films. Nat. Nanotechnol. 10, 145–150 (2015).
Cho, D. et al. Correlated electronic states at domain walls of a Mott-charge-density-wave insulator 1T-TaS2. Nat. Commun. 8, 392 (2017).
Skolimowski, J., Gerasimenko, Y. & Žitko, R. Mottness collapse without metallization in the domain wall of the triangular-lattice Mott insulator 1T-TaS2. Phys. Rev. Lett. 122, 036802 (2019).
Park, J. W., Lee, J. & Yeom, H. W. Zoology of domain walls in quasi-2D correlated charge density wave of 1T-TaS2. npj Quant. Mater. 6, 32 (2021).
Ritschel, T. et al. Orbital textures and charge density waves in transition metal dichalcogenides. Nat. Phys. 11, 328–331 (2015).
Lee, S.-H., Goh, J. S. & Cho, D. Origin of the insulating phase and first-order metal–insulator transition in 1T-TaS2. Phys. Rev. Lett. 122, 106404 (2019).
Butler, C. J., Yoshida, M., Hanaguri, T. & Iwasa, Y. Mottness versus unit-cell doubling as the driver of the insulating state in 1T-TaS2. Nat. Commun. 11, 2477 (2020).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Acknowledgements
We thank J. Yu and C. Wang for assistance with the atomic force microscopy measurements. This work was supported by the National Key Research and Development Program of China (grant numbers 2018YFA0307000, 2017YFA0303201 and 2021YFA1400400), the National Natural Science Foundation of China (grant numbers 11774151, 12225407, 12204160 and 12074174, and A3 Foresight Program 51861145201) and the Fundamental Research Funds for the Central Universities (grant number 0204-14380212). K.W. and T.T. acknowledge support from JSPS KAKENHI (grant numbers 19H05790, 20H00354 and 21H05233) and A3 Foresight by JSPS. B.Y. acknowledges the financial support by the European Research Council (ERC Consolidator Grant ‘NonlinearTopo’, number 815869).
Author information
Authors and Affiliations
Contributions
X.X. conceived the project. G.L. and K.H. performed the measurements. T.Q. and D.L. fabricated the devices. Z.M., Z.H. and J.W. grew the TaS2 crystals. K.W. and T.T. grew the h-BN crystals. G.L. and X.X. analysed the experimental data. Y.L. and B.Y. performed the DFT calculations. W.T., J.X. and L.G. performed atomic force microscopy measurements. X.X., B.Y., G.L. and J.-M.L. interpreted the results. X.X. and B.Y. co-wrote the paper, with comments from all authors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Nanotechnology thanks Wencan Jin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Notes 1–4 and Figs. 1–14.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liu, G., Qiu, T., He, K. et al. Electrical switching of ferro-rotational order in nanometre-thick 1T-TaS2 crystals. Nat. Nanotechnol. 18, 854–860 (2023). https://doi.org/10.1038/s41565-023-01403-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41565-023-01403-5
This article is cited by
-
Voltage enables ferro-rotational domain switching
Nature Nanotechnology (2023)