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Ectopic expression of a mechanosensitive 
channel confers spatiotemporal resolution 
to ultrasound stimulations of neurons for 
visual restoration

Sara Cadoni1, Charlie Demené    2, Ignacio Alcala    1,7, Matthieu Provansal    1,7, 
Diep Nguyen1, Dasha Nelidova3, Guillaume Labernède1, Jules Lubetzki1, 
Ruben Goulet1, Emma Burban1, Julie Dégardin1, Manuel Simonutti1, 
Gregory Gauvain    1, Fabrice Arcizet1, Olivier Marre1, Deniz Dalkara1, 
Botond Roska3, José Alain Sahel    1,4,5,6, Mickael Tanter2,7 & Serge Picaud    1,7 

Remote and precisely controlled activation of the brain is a fundamental 
challenge in the development of brain–machine interfaces for neurological 
treatments. Low-frequency ultrasound stimulation can be used to 
modulate neuronal activity deep in the brain, especially after expressing 
ultrasound-sensitive proteins. But so far, no study has described an 
ultrasound-mediated activation strategy whose spatiotemporal resolution 
and acoustic intensity are compatible with the mandatory needs of brain–
machine interfaces, particularly for visual restoration. Here we combined 
the expression of large-conductance mechanosensitive ion channels 
with uncustomary high-frequency ultrasonic stimulation to activate 
retinal or cortical neurons over millisecond durations at a spatiotemporal 
resolution and acoustic energy deposit compatible with vision restoration. 
The in vivo sonogenetic activation of the visual cortex generated a 
behaviour associated with light perception. Our findings demonstrate that 
sonogenetics can deliver millisecond pattern presentations via an approach 
less invasive than current brain–machine interfaces for visual restoration.

Brain–machine interfaces (BMIs) based on multielectrode arrays 
(MEAs) have met with increasing success in peripheral sensory system 
rehabilitation strategies as well as for restoring hearing in the cochlea 
or sight in the retina1,2. The restoration of vision is the most demanding 
challenge for BMIs, as it ultimately requires the 13 Hz rate transmission 

of complex spatial patterns3. Although form perception can be achieved 
by epicortical or intracortical implants4,5, the lack of long-term sus-
tainability has intensified the search for the non-contact distant 
activation of neuronal circuits. Optogenetic therapy has provided an 
alternative, as demonstrated on the retina even at the clinical level6.  
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AAV gene delivery to target specific cell populations23,25,26, although 
without the spatiotemporal resolution compatible for vision restora-
tion. A high temporal resolution was shown for MscL only in primary 
cultured hippocampal neurons with mutations enhancing its pressure 
sensitivity27,28—the G22S MscL mutant boosting US sensitivity of in vivo 
neurons23.

Here we have investigated if we can use the MscL channel29: (1) to 
boost the neuronal sensitivity to US not only ex vivo but also in vivo, 
(2) to target a locally defined subset of neurons by gene therapy, (3) to 
induce responses with a temporal precision (millisecond time delay 
and recovery) sufficient for visual restoration and (4) to gain more 
than one order of magnitude in spatial resolution through the in vivo 
use of high-frequency US at low acoustic intensities to prevent adverse 
effects20.

Sonogenetic activation on the ex vivo retina
Using the retina as an easily accessible part of the central nervous 
system, we specifically targeted MscL into rat retinal ganglion cells 
(RGCs), with in vivo intravitreous delivery by an adeno-associated vec-
tor (AAV) encoding the mscL gene from Escherichia coli in its wild-type 
(WT) form or with the G22S mutation28. An AAV2.7m8 (ref. 30) sero-
type vector was used to encode MscL fused to the red fluorescent 

Despite encouraging animal studies7–9, approaches for the opti-
cal stimulation of the cortex are hindered by the dura mater and by 
brain scattering as well as the absorption of light requiring invasive  
light guides10.

Ultrasound (US) waves could potentially overcome these limita-
tions to achieve the non-contact neuromodulation of cortical and sub-
cortical areas of the brains11–17. However, this neuromodulation requires 
a craniotomy (Fig. 1a) and the use of high US frequencies to reach the 
required spatial resolution. Switching from 0.5 MHz to 15.0 MHz would 
theoretically lead to a 30-fold improvement in resolution (Fig. 1c–e) 
and an ~27,000-fold improvement in neuromodulated volume. Unfor-
tunately, most existing US neuromodulation strategies are restricted 
to low-frequency15 or mid-range18 transmissions resulting in poor 
spatial resolution (>3 mm) and/or long-lasting responses, whereas a 
high frequency of 30 MHz was reported to generate inhibitory neu-
romodulation19. Other attempts at high-frequency neuromodulation 
have resulted in higher levels of acoustic energy20, with risks of thermal 
heating21 and tissue damage14.

Sonogenetic therapy has proposed to generate neuronal mecha-
nosensitivity by the ectopic expression of US-sensitive proteins like 
the TRP1 ion channel22, mechanosensitive ion channel of large con-
ductance (MscL) (ref. 23) or auditory-sensing protein prestin24 using 
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Fig. 1 | Sonogenetics using focused US beams for visual restoration through 
the intact dura mater: impact of ultrasonic transmission frequency.  
a, Concept of visual restoration with US matrix arrays implanted in a cranial 
window for the localized US neuromodulation of the primary visual cortex 
in humans. The US beam can be adaptively focused at different locations in 
the V1 cortex as it passes through the intact dura mater as well as subdural 
and subarachnoid spaces. b, Proof-of-concept setup used in this study for V1 
sonogenetic activation in rodents, using a high-frequency focused transducer on 
a craniotomized mouse. c, Characterization of the radiated field for the 0.5 MHz 
transducer used in this study. A longitudinal view of the maximal pressure for a 
monochromatic acoustic field radiated at 0.5 MHz by the 25.40-mm-Ø, 31.75-mm-

focus transducer (top). The maximum pressure is reached at 25.9 mm, slightly 
closer to the transducer than the geometric focal point, which is a documented 
effect. The transverse section of the maximum pressure field at depth z = 25.9 mm 
(middle). A one-dimensional profile of this transverse section giving the FWHM 
of the focal spot (4.36 mm at 0.5 MHz) (bottom). d, Same characterization for the  
2.25 MHz 12.7-mm-Ø 25.4-mm-focus transducer. e, Same characterization for the  
15 MHz 12.7-mm-Ø 25.4-mm-focus transducer. Note that the maximum pressure  
is reached very close to the geometric focus (25.21 mm versus 25.40 mm for the  
geometric focus) for this configuration. The FWHM of the focal spot is 0.276 mm.  
Panels a and e are created with Biorender.com.
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Fig. 2 | Sonogenetic therapy in rat RGCs. a, In vivo retinal fundus image showing  
MscL–tdTomato expression. b,c, Confocal stack projections across the RGC layer  
of a flat-mounted retina. d, Density of RBPMS-positive, MscL-positive and double- 
labelled cells (n = 5 WT MscL and G22S MscL retinas; *p = 0.0140, for RBPMS(+);  
*p = 0.0465 for RBPMS(+)/MscL(+), unpaired two-tailed t-test). e, Schematic  
of the experimental setup with an image of the retina on MEA electrodes. f,  
Representative peristimulus time histograms (PSTHs) for US or visual stimuli in  
MscL-transfected or NT RGCs (US stimuli, 15 MHz at 1.27 MPa). g, RGC response  
latencies to a 15 MHz US stimulus for MscL (n = 300 cells, 9 retinas) and NT  
retinas (n = 41 cells, 4 retinas). Dotted line, 45 ms latency threshold. h, Numbers  
of cells per retina responding to 15 MHz US stimuli (0.98–1.27 MPa) for MscL  
(n = 9 retinas) and NT (n = 4 retinas) with SL (<45 ms) or LL (>45 ms). *p = 0.0002,  
unpaired two-tailed t-test. i, Mean numbers of SL-responding RGCs per retina  
following stimulation with US stimuli of increasing pressures for MscL (n = 9)  

and NT (n = 4) retinas. ***p = 0.00008, ***p = 0.0010, ***p = 0.0008, multiple  
unpaired two-tailed t-tests. j, Maximum firing rates and response durations (SL  
and LL RGCs from MscL retinas in response to US stimuli of increasing pressures  
(0.20–1.27 MPa)) (n = 9 retinas, **p = 0.0017, *p = 0.0418, unpaired two-tailed t- 
test). k, Percentages of SL RGC cells (normalized against the maximum number of  
responsive cells in each experiment) responding to US stimuli for WT MscL (n = 3  
retinas) and G22S MscL (n = 6 retinas) retinas. **p = 0.0065, **p = 0.0083, multiple  
unpaired two-tailed t-tests. l, Ratios of RGCs responding to US stimulation with  
SL or LL for MscL and NT retinas (n = 9 retinas for MscL and 4 retinas for NT),  
following the application of a cocktail of synaptic blockers (CNQX-CPP-LAP4,  
n = 3 retinas for both MscL and NT) and for P23H retinas with and without  
MscL expression (for both, n = 3 retinas). *Conditions with no US-elicited cell  
responses. Data are presented as mean values ± standard error of the mean  
(s.e.m.). Scale bars, 100 μm (b), 20 μm (c), 200 μm (e).
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protein tdTomato, under the control of the SNCG promoter to target 
the RGC population31. On the eye fundus, tdTomato fluorescence was 
detected in vivo (Fig. 2a). Its expression was restricted to RGCs, as indi-
cated by their double labelling with a specific RGC antibody, RPBMS  
(Fig. 2b and Extended Data Fig. 1b). The expression of the MscL channel 
seemed to be concentrated at the cell membrane on the soma and axon 
(Fig. 2c and Extended Data Fig. 1) with 24% and 46% of RPBMS-positive 
cells expressing tdTomato for the WT MscL and G22S MscL proteins, 
respectively (Fig. 2d).

During the ex vivo recordings of the MscL-expressing retina 
(Fig. 2e), RGCs displayed strong and sustained ON spiking responses 
to focused 15 MHz US stimulation (Fig. 2f (left)) irrespective of 
their ON or OFF responses to light (Extended Data Fig. 2a). Many 
RGCs presented responses with very short latencies (SLs), namely, 
12.2 ± 2.5 ms (Fig. 2f (left)), but some had long latencies (LLs) (Fig. 2g). 
By contrast, non-transfected (NT) retina displayed only LL responses, 
that is, 50.4 ± 4.2 ms (Fig. 2f (right) and Fig. 2g). Synaptic blockers 
(CNQX-LAP4-CPP) abolished US responses in NT retinas but not in 
MscL-transfected retinas, in which they decreased the number of LL US 
responses (LL denotes latency of more than 45 ms; Fig. 2l and Extended 
Data Fig. 2c,d). This observation suggests that responses in NT retinas 
originate upstream from RGCs, as previously reported32. This conclu-
sion was supported by the absence of US response in the retinas of NT 
blind P23H rats having lost photoreceptors whereas transfected P23H 
showed a majority of SL responses (<45 ms) (Fig. 2l and Extended Data 
Fig. 2c,d). The geometric-mean latencies in MscL-tested groups were 
very different from those for the NT retina, especially in the blind 
P23H retina (Extended Data Fig. 2c), but the cumulative distribution 
of latencies further highlighted these differences (Extended Data  
Fig. 2d). These results suggested a natural mechanosensitivity in pho-
toreceptors highly reminiscent of that of auditive cells in agreement 
with the expression of Usher proteins in both sensory cells. These 
proteins are known for generating the auditory mechanotransduction 
and probably the phototropism of photoreceptors underlying the 
Stiles Crawford effect33.

MscL expression decreased latency and increased the mean 
number of cells per retina responding to US (Fig. 2h). SL-responding 
cells expressing MscL were sensitive at much lower US pressures than 
NT cells and their number increased with the US pressure (Fig. 2i). SL 
US responses also involved higher firing rates and were more sustained 
than LL US responses (Fig. 2j). Moreover, we observed that the G22S 
mutation further enhanced the sensitivity of SL RGCs to lower US pres-
sures (Fig. 2k and Extended Data Fig. 1b). We subsequently restricted 
our analyses to SL US responses (<45 ms). Neurons responded even to 
very short stimulation durations (10 ms), with responses showing a fast 
return to the control level of activity (Fig. 3a). US response durations 
were correlated with the stimulus duration, although a reduction in 
the firing rate occurred for longer stimuli (>100 ms) (Fig. 3c,d). Using 
different stimulus repetition rates, RGCs were able to follow rhythms 
up to a 10 Hz frequency (Fig. 3b–e). The Fano factor indicated that 
the response had low variability in the spike count and possibly high 
information content (Fig. 3c–e).

We then investigated whether different US frequencies (0.50, 
2.25 and 15.00 MHz) affected the spatial resolution of the response, 
in accordance with the measured US pressure fields (Extended Data 
Fig. 3). Transducers were designed with a similar focal distance and 
numerical aperture, for the transmission of focused beams over dif-
ferent frequency ranges (0.50, 2.25 and 15.00 MHz, corresponding to 
wavelengths of 3.0, 0.7 and 0.1 mm, respectively) (Fig. 1c–e). Features 
of responses evoked by the different US frequencies were found to be 
similar (Extended Data Fig. 2e,f), although increasing the frequency 
from 0.5 MHz (typical of neuromodulation) (Fig. 1c) to 15.0 MHz  
(Fig. 1e) reduced the focal spot by a factor of ~4,100 with our trans-
ducers. Cells responding to US were widespread over the recorded 
area for 0.50 and 2.25 MHz, but appeared to be more confined for 

15.00 MHz (Fig. 3f), despite similar acoustic parameters (100 ms at 1.1 
and 1.3 MPa) for the 2.25 MHz and 15.00 MHz beams. The acoustic pres-
sure at 0.5 MHz was lower (0.5 MPa) due to electric-power limitation 
of our electronics. The spatial dispersion of activated cells decreased 
significantly from 1.48 ± 0.12 mm and 1.30 ± 0.18 mm at 0.50 MHz and 
2.25 MHz, respectively, to 0.59 ± 0.03 mm at 15.00 MHz (Fig. 3g). This 
spatial dispersion was consistent with the size of the measured US pres-
sure fields (Fig. 1c–e); for the 0.50 MHz transducer, the focal spot was 
much larger than the MEA chip. The density of activated cells increased 
significantly with increasing US frequency but on a smaller area  
(Fig. 3h). US stimulation is more effective at higher frequencies, 
because lower acoustic power values are required to activate an equiva-
lent number of cells. Indeed, even if the acoustic intensities at 2.25 and 
15.00 MHz were fairly similar, the acoustic power delivered was almost 
two orders of magnitude lower at 15.00 MHz (0.03 W) than at 2.25 MHz 
(0.82 W). At 15.00 MHz, moving the focal spot of the US probe above 
the retina triggered a shift in the area of responding cells (Fig. 3i). The 
response centre was found to move in accordance with the displace-
ment of the US transducer (Fig. 3j). These results demonstrate that our 
sonogenetic therapy approach can efficiently activate neurons with a 
millisecond and submillimetre precision.

Spatiotemporal resolution in vivo on the visual 
cortex
We investigated whether this approach could also be applied to the 
brain in vivo through a cranial window (Fig. 1a,b). As the G22S muta-
tion enhanced the US sensitivity of RGCs ex vivo, we expressed G22S 
MscL in cortical neurons of the primary visual cortex (V1) in rats. We 
injected AAV9.7m8 encoding the G22S MscL channel fused to tdTomato 
under the control of the neuron-specific CamKII promoter into V1. The 
tdTomato fluorescence was detected in the brain (Fig. 4a) and in corti-
cal slices, particularly in layer 4 (Fig. 4b). Staining with an anti-NeuN 
antibody showed that 33.4% of cortical neurons in the transfected area 
expressed tdTomato (Fig. 4c).

To measure the responses to 15 MHz US stimulations, we placed 
a micro-electrocorticography (μEcoG) electrode array on the cortical 
surface of V1 (Fig. 4d). In NT animals, no US-evoked signal was recorded 
(Fig. 4e (right), n = 3 rats), whereas in V1 expressing G22S MscL, the 
US stimulation of the cortical surface elicited large negative μEcoG 
potentials (Fig. 4e (middle), n = 6 rats). These US-evoked negative 
deflections were different from the recorded visual-evoked potentials  
(Fig. 4e (left)). Amplitudes and durations of the US responses were 
clearly related to the duration of US stimulations (Fig. 4f,h) and US 
pressures (Fig. 4g). V1 cortical responses were again able to follow a 
repetition rate of up to 13 Hz (Fig. 4i) even if the peak amplitude slightly 
decreased for increasing stimulation frequencies.

The peak depolarization of each channel was measured and lin-
early interpolated to build pseudocolour activation maps showing 
sizes of the US-responding cortical area dependent on the US pressure 
from 0.26 MPa (0.58 ± 0.17 mm2, n = 6 rats) to 1.27 MPa (1.41 ± 0.23 mm2, 
n = 5 rats) (Fig. 4j–l). When the US probe was moved laterally, the 
source of the generated neuronal activity moved in a similar direc-
tion (Fig. 4k). The spatial location of the evoked potentials moved by 
0.29 mm (±0.09 mm, n = 6 rats) from the previous location (Fig. 4m 
and Extended Data Fig. 5), even though we moved the US transducer 
in 0.40 mm steps. This discrepancy between the displacement of the 
activated area and movement of the transducer was certainly related 
to the 0.3 mm discrete spatial pitch distribution of the electrodes and 
the lateral spread of activity in the circuit. These results suggest that 
our approach to sonogenetic therapy could yield a spatial resolution of 
within 400 μm for stimulations at 15 MHz, the focal spot of our 15 MHz 
transducer being 276 μm wide (Fig. 1d). This opens up the possibility 
of targeting small areas (down to 0.58 mm2 for 0.26 MPa), depending 
on the pressure level. These very localized US-evoked responses, their 
dependence on the position of the US probe and their SLs confirmed 
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that they were due to the activation of G22S MscL-expressing neurons 
and not to an indirect response related to auditory activation, as sug-
gested previously34,35.

When recording with penetrating electrode arrays (Fig. 4d), V1 
neurons expressing G22S MscL generated sustained responses even to 
10-ms-long 15 MHz US stimuli (Fig. 5a) with latencies shorter than 10 ms 

(5.10 ± 0.62 ms, n = 27 cells) (Fig. 5b), consistent with direct US activa-
tion. Responding neurons were recorded at various cortical depths, 
ranging from 100 μm to 1.00 mm (Fig. 5c), the focal spot diameter of 
the US probe being 3.75 mm in the x–z plane. Deep neurons reliably 
responded to the stimuli of decreasing duration, from 50 ms to 10 ms, 
with similar firing rates, whereas longer stimuli induced responses in 
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FWHM and are centred on the estimated centre of the response) for 0.50, 2.25 
and 15.00 MHz (top). The corresponding activation maps representing the 
normalized firing rates of the cells following US stimulation (bottom). Each 
square box represents an electrode with at least one US-activated cell.  

g,h, Spatial dispersions of activated cells (g) and ratios of the number of activated 
cells to the stimulated area for the three US frequencies (h); ****p = 0.00002 (g), 
p = 0.00006 (15.00 versus 2.25 MHz) and p = 0.00005 (15.00 versus 0.50 MHz) 
(h); **p = 0.0008, *p = 0.0169, unpaired two-tailed t-test. Here n = 12 retinas for 
0.50 MHz (0.29–0.68 MPa), n = 5 retinas for 2.25 MHz (1.11–1.62 MPa) and n = 9 
retinas for 15.00 MHz (1.12–1.27 MPa). i, Heat maps showing activated cells in the 
MscL retina following displacements (0.4 and 0.8 mm) of the US transducer. The 
circles represent the estimated centre of the response. j, Relative displacements 
of the centre of the response following the displacement of the 15 MHz US 
transducer. ****p = 0.00001, **p = 0.0018, unpaired two-tailed t-test. Here 
n = 9, 9 and 6 positions for 4, 4 and 2 retinas for displacements of 0, 0.40 ± 0.20 
and 0.80 ± 0.18 mm (s.d.), respectively. The grey dotted line represents the 
theoretical displacement. Data are presented as mean values ± s.e.m. Scale bars, 
1.0 mm (f, top); 0.5 mm (f (bottom) and i).
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a broader population of neurons (Fig. 5d–e). To investigate if a US pat-
tern could be applied for visual restoration at a refreshing rate of up 
to 13 Hz, we progressively increased the sequence of stimuli. Cortical 
neurons were able to generate distinct responses to each US stimulus 
up to a 13 Hz repetition rate (Fig. 5f), but the number of responding 
cells decreased with increasing stimulus frequency (Fig. 5g). No major 
tissue temperature increase is expected even at this stimulation rate 
(Extended Data Fig. 4).

Behavioural response to the sonogenetic 
stimulation of the visual cortex
To define if the US-elicited synchronous activation of MscL-expressing 
excitatory cortical neurons can induce light perception, we assessed 
the mouse behaviour during an associative learning test including 
15 MHz US stimulation of V1 in G22S MscL-transfected (n = 14) and NT 
(n = 9) animals (Fig. 6 and Extended Data Fig. 6). Mice subjected to water 
deprivation were trained to associate the visible-light stimulation of 
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one eye with a water reward (Fig. 6a)36. This task was learned within four 
days, as indicated by the increasing success rate during this period, 
from 30.9 ± 17.9% (standard deviation (s.d.)) to 86.2 ± 14.1% (s.d.) for 
G22S MscL-transfected mice (Fig. 6b). The success rate was determined 
by assessing the occurrence of an anticipatory lick between the light 
onset and the release of water reward 500 ms later (Fig. 6a). Only mice 
reaching a 60% success rate on the fourth day were retained for this 
analysis, and sessions showing a compulsive licking rate were excluded. 
Following cortical US stimulation on day 5, G22S MscL-transfected 
mice achieved a success rate of 69.3 ± 25.4% (s.d.), the difference of 
which showed no statistical difference with the success rate follow-
ing light stimulation (LS) on day 4 (Fig. 6b). After a pause during the 
weekend (days 6–7), the animals retained the task, their success rates 
showing no statistically significant differences with the one following 
LS (Fig. 6b). By contrast, in NT animals, the success rate following the 
US stimulation of their visual cortex dropped to 38.1 ± 18.5% (s.d.), and 
the difference with the success rate following LS on the fourth day was 
highly significant (p < 0.0001) (Fig. 6d and Extended Data Fig. 6). In the 
AAV-injected mice, we found that the latency of the first anticipatory 
lick was shorter for sonogenetic stimulation (187.1 ± 37.3 ms; n = 14 
(s.d.)) than for stimulation with a light flash (265.9 ± 46.5 ms; n = 23 
(s.d.)) (Fig. 6c and Extended Data Fig. 6d). This SL for the US response is 

consistent with the faster activation of cortical neurons for sonogenetic 
stimulation than for LS of the eye (Fig. 4e). In transfected mice, success 
rates increased with pressure (Fig. 6d), suggesting a brighter and/or 
a larger US-elicited percept with a greater US pressure, as described 
with increasing currents in human patients4. Interestingly, the lick-
ing frequency during 500 ms before delivery of the water reward also 
increased with US pressure (Fig. 6e). These results suggest that the 
sonogenetic stimulation of the visual cortex generates a perception 
in mice that is probably associated with a visual perception, although 
more complex visual behaviours (as form discrimination) would be 
required for a demonstration.

Safety issues
Our sonogenetic approach greatly decreased the US pressure required 
for the activation of RGCs and V1 cortical neurons with stimulation 
sequences remaining below FDA safety limits (510(k), Track 3) for 
US imaging (for example, for a 10 ms US stimulus of 0.6 MPa, the 
non-derated spatial peak temporal peak intensity (Isptp) is 12.00 W cm–2 
and the non-derated Ispta value is 0.12 W cm–2). These very low acoustic 
pressures and acoustic intensities prevent tissue damage, as they are 
similar to those that have been widely used in clinical diagnostic imag-
ing for decades37. Moreover, the simulations of US-induced heating 
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values ± s.e.m.
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in brain tissue revealed that typical US parameters (that is, 20 ms at 
1.27 MPa) (Fig. 4e–h) increased the local temperature by an estimated 
0.12 °C, with even high repetition rates (up to 13 Hz), leading to a moder-
ate temperature increase (<0.30 °C) (Extended Data Fig. 4c–f). These 
low temperature fluctuations (corresponding to ‘worst-case’ scenarios 
as we used non-derated US parameters) and stimulation sequences 
compliant with FDA limits suggest that our approach had no toxic side 
effects and that US-elicited responses were not temperature driven 
and were therefore probably mediated by the mechanical activation of 
MscL channels by US. The fact that acoustic intensities and pressures 
used here remained far below the FDA requirements for conventional 
ultrasonic imaging in clinics (https://www.fda.gov/media/71100/down-
load) and generated very low temperature increase in comparison with 
thermal damaging effects38 raises high hopes for a smooth clinical trans-
lation. Moreover, a very recent safety study19 demonstrated an absence 
of brain tissue damage using high-frequency activation at ten times 
higher acoustic intensities (continuous insonication at 11.80 W cm–2 
compared with our worst-case spatial peak temporal average intensity 
(Ispta) of 1.56 W cm–2 for repeated stimulations at 13 Hz rate).

Conclusions
The development of remotely controlled cortical and subcortical deep 
neuronal stimulation techniques is of considerable interest for the treat-
ment of diverse neurological diseases and sensory handicaps. Most pre-
vious sonogenetic studies focused on the use of low-frequency US22–24  
as in the recent demonstration of MscL-based sonogenetic activation in 
mouse brain23. However, such low-frequency US waves lead to limited 
centimetre spatial resolutions (∼5 × 5 × 45 mm3) and an uncontrolled 

spatial-beam distribution. An alternative approach to spatially contain-
ing US stimulations involves the use of higher US frequencies, but this 
was thought to demand higher energy levels, exceeding safety limits 
and favouring tissue damage20. The bacterial MscL channel has been 
reported to sensitize neurons to US23,27,28 and to lower the pressure for 
neuronal activation, but its use for high-spatiotemporal-resolution 
sonogenetic stimulation has yet to be shown to be effective in vivo. We 
here showed that that US activation of G22S MscL expressed in retinal 
or cortical neurons resulted in responses with millisecond latencies 
and a spatial resolution of at least 400 μm in the x–y plane at 15 MHz 
frequency. The subsequent neuronal activation throughout the depth 
of the visual cortex (Fig. 5n–p) led to a behavioural motor response, sug-
gesting light perception by the animal. These sonogenetic responses 
were genuinely related to MscL expression, as they were not observed in 
NT animals. Following previous demonstrations that the MscL channel 
is a suitable sonogenetic actuator23,27,28, we provide further evidence 
that the MscL channel has appropriate kinetics for the activation of 
neurons at a precise spatiotemporal resolution both in situ and in vivo.

The temporal precision of sonogenetics is lower than that achieved 
with optogenetics (>40 Hz) by the fastest opsins39 and ChrimsonR 
(ref. 40), which can successfully restore vision at the retinal level in 
patients6. MscL only follows a 13 Hz frequency in vivo, which is in the 
same range as the 5–20 Hz achieved in vivo by the very sensitive opsin, 
ChRmine (ref. 41), a frequency range probably sufficient for vision3. 
The discovery of ChRmine has enabled investigators to stimulate 
deep into the rodent brain even from above the skull41. Future studies 
will have to examine the spatial resolution of this approach and how it 
compares to sonogenetics. As for all the gene therapies in non-dividing 
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Fig. 6 | Behavioural response induced by the sonogenetic activation of the V1 
cortex in mice following associative visual training. a, Schematic of the  
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associative learning paradigm for light stimulation (LS) with a water reward  
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at 15 MHz (days 5 and 8–10). b, Mean rates of successful trials for 4 days of  
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reward followed by US stimulation (orange, 1.2 MPa) for G22S MscL-transfected  
mice (between day 4 of LS and day 5 of US; 50 ms at 1.2 MPa; ns, p = 0.0570).  
Between day 5 of US and day 8 of US, 50 ms at 1.2 MPa; ns, p = 0.6079, two-tailed  
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265.9, 187.1 ms and s.d., 46.5, 37.3 ms for LS and US, respectively). d, Mean  
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presented as mean values ± s.e.m.

http://www.nature.com/naturenanotechnology
https://www.fda.gov/media/71100/download
https://www.fda.gov/media/71100/download


Nature Nanotechnology | Volume 18 | June 2023 | 667–676 675

Article https://doi.org/10.1038/s41565-023-01359-6

cells, both optogenetic and sonogenetic therapies are expected to be 
lifelong lasting as indicated by gene therapy in congenital Leber con-
genital amaurosis, although it did not stop the ongoing degeneration 
of photoreceptors in patients32.

Restoration of form vision at the cortical level was previously 
achieved with 0.5 to 1.0 mm surface electrodes spaced more than 
1.0 mm apart5 or with 1.5-mm-long penetrating electrodes spaced 
400 μm apart4. The spatial resolution of the proposed sonogenetic 
therapy, therefore, appears to be compatible with the cortical resto-
ration of form vision but with a remote non-contact device. To pre-
serve this spatiotemporal resolution, the US stimulator will require 
to be placed directly above the dura mater or above a US transparent 
artificial skull42. At 15 MHz, the typical penetration depth with neg-
ligible heating is 20 mm. Moreover, the resolution of the approach 
could be increased by using gene therapy to drive the expression in 
specific cell populations and cell compartments31,43. Further studies 
are required to generate an interface for coding visual information 
into US patterns transmitted by an ultrasonic matrix array onto the 
visual cortex at a video rate. To reduce the US load, visual restoration 
can take advantage of an event-based camera, heat-sensitive cam-
era or depth-filtering imaging to limit the active pixel numbers in 
an image44–46. Therefore, our approach provides great hope for the 
development of high-resolution visual restoration at the cortical level, 
through its unique combination of a rapid response, high spatial resolu-
tion and cell selectivity with promoters. Even if this approach requires 
craniotomy, as for other existing visual prostheses, it provides a less 
invasive approach based on deep and distant cortical activation from 
above the dura mater following AAV cortical injections. More gener-
ally, it paves the way for a new type of genetic-based BMI capable of 
compensating for disabilities and suitable for use in treatments of 
neurological disorders.
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Methods
Animals
Experiments were conducted in accordance with the National Institutes 
of Health Guide for the Care and Use of Laboratory Animals. Protocols 
were approved by the Local Animal Ethics Committee (Committee 
Charles Darwin no. 5, registration nos. 9529 and 26889) and conducted 
in agreement with Directive 2010/63/EU of the European Parliament. 
Long–Evans male rats aged between 2 and 12 months and WT male mice 
(C57BL/6J) aged 9 weeks were obtained from Janvier Laboratories; 
P23H (line 1) male transgenic rats (9–22 months) were raised locally.

Plasmid cloning and AAV production
Plasmids containing the E. coli mscL sequence in the WT form and with 
the G22S mutation were obtained from Francesco Difato (Addgene plas-
mids #107454 and #107455)28. To target RGCs, the SNCG promoter31 was 
inserted into an AAV backbone plasmid containing the mscL sequence 
fused to the tdTomato gene and the Kir2.1 ER export signal, to drive 
expression at the plasma membrane. An AAV2.7m8 vector was used 
for intravitreous delivery. For targeting neurons in the V1 cortical lay-
ers, the SNCG promoter was replaced by the CamKII promoter and an 
AAV9.7m8 vector was chosen. Recombinant AAVs were produced by 
the plasmid co-transfection method, and the resulting lysates were 
purified by iodixanol purification31.

US stimulus
Three focused US transducers with different central frequencies 
were used: 0.50 MHz (diameter, Ø = 1.00″ = 25.4 mm; focal distance, 
f = 1.25″ = 31.7 mm) (V301-SU, Olympus), 2.25 MHz (Ø = 0.50″ = 12.7 mm, 
f  = 1.00″ = 25.4 mm) (V306-SU, Olympus) and 15.00 MHz 
(Ø = 0.50″ = 12.7 mm, f = 1.00″ = 25.4 mm) (V319-SU, Olympus), corre-
sponding to numerical apertures of F/Ø = 1.25 and 2.00. Acoustic fields 
radiated by those three focused transducers are presented in Fig. 1  
(simulations) and Extended Data Fig. 3 (experimental measurements). 
A TiePie Handyscope (HS5, TiePie Engineering) was used to produce 
the stimulus waveform, which was then passed through an 80 dB RF 
power amplifier (VBA 230-80, Vectawave) connected to the transducer. 
Transducer pressure outputs (pressure at focus, three-dimensional 
(3D) pressure maps) were measured in a degassed water tank with a 
Royer–Dieulesaint heterodyne interferometer47. US stimuli used for 
ex vivo and in vivo stimulation had the following characteristics: 1 kHz 
pulse repetition frequency with a 50% duty cycle, sonication duration 
between 10 and 200 ms and interstimulus interval between 0.01 and 
2.00 s. Peak acoustic pressures ranged from 0.11 to 0.88 MPa, 0.30 
to 1.60 MPa and 0.20 to 1.27 MPa for the 0.50, 2.25 and 15.00 MHz 
transducers, respectively. The corresponding estimated spatial peak 
pulse average intensity (Isppa) values were 0.39–25.14, 2.92–83.12 and 
1.30–52.37 W cm–2.

Intravitreous gene delivery and retinal imaging
Rats were anaesthetized48 and AAV suspension (2 μl), containing 
between 8 and 14 × 1010 viral particles, was injected into the centre of 
the vitreous cavity. One month later, tdTomato fluorescence imaging 
was performed on the injected eyes, with a MICRON IV retinal imaging 
microscope (Phoenix Research Laboratories) and Micron Discover 
v.2.2.

MEA recordings
Retinal pieces were flattened on a filter membrane (Whatman, GE 
Healthcare Life Sciences) and placed on an MEA (electrode diameter, 
30 μm; spacing, 200 μm; MEA256 200/30 iR-ITO, MultiChannel Sys-
tems) coated with poly-l-lysine (0.1%, Sigma), with RGCs facing the 
electrodes31. AMPA/kainate glutamate receptor antagonist 6-cyano-7
-nitroquinoxaline-2,3-dione (CNQX, 25 μM, Sigma-Aldrich), the NMDA 
glutamate receptor antagonist [3H]3-(2-carboxypiperazin-4-yl) 
propyl-1-phosphonic acid (CPP, 10 μM, Sigma-Aldrich) and a 

selective group III metabotropic glutamate receptor agonist, l-(+)-
2-amino-4-phosphonobutyric acid (LAP4, 50 μM, Tocris Bioscience), 
were bath applied through the perfusion line. Light stimuli were deliv-
ered with a digital micromirror display (Vialux; resolution, 1,024 × 768) 
coupled to a white light-emitting diode light source (MNWHL4, Thor-
labs) focused on the photoreceptor plane (irradiance, 1 μW cm–2). US 
transducers were coupled with a custom-made coupling cone filled 
with degassed water and mounted on a motorized stage (PT3/M-Z8, 
Thorlabs) placed orthogonally above the retina. The reflected signal of 
the MEA chip and the retina was detected with a US key device (Lecoeur 
Electronique). The distance between the retina and transducer was 
equal to the focal length of the transducer; this was verified with the 
flight time of the reflected signal. From RGC recordings with a 252 chan-
nel preamplifier and MC_Rack v. 4.6.2 (MultiChannel Systems), spikes 
were sorted with Spyking CIRCUS 0.5 software49. RGC responses were 
analysed with custom scripts written in MATLAB (MathWorks 2018b) 
for classification as ON, ON–OFF or OFF, with the response dominance 
index50. Latencies were calculated as the time between stimulus onset 
and the maximum of the derivative of the spike density function (SDF). 
Two classes of US-responding cells were identified on the basis of 
latency—SL and LL—by fixing a threshold equal to the minimum of 
the latency distribution of the responses of NT cells to US (45 ms). We 
determined the peak value A of the SDF for the calculation of response 
duration, which was defined as the time interval between the two time 
points for which the SDF was equal to A/e (where A is peak depolariza-
tion and e is Euler’s number). The Fano factor, quantifying spike count 
variability, was calculated as the ratio of the variance of the spike count 
to the mean. The Euclidean distance between two activated cells was 
weighted according to the maximum firing rate of the cells. The ratio 
of the number of activated cells to the size of the area stimulated on the 
MEA chip was calculated considering the size of the US focal spot for 
2.25 and 15.00 MHz and the size of the MEA for 0.50 MHz, because the 
focal spot was larger than the MEA for this frequency. The centre of the 
response was estimated by weighting the maximum firing rate of each 
cell by its distance from other responding cells, and the displacement 
of the response was calculated as the Euclidean distance between two 
centre-of-response positions.

Intracranial injections
AAV suspensions were injected into the right hemisphere at two dif-
ferent locations in rats (2.6 mm ML, 6.8 mm AP and 3.1 mm ML, 7.2 mm 
AP from the bregma) or at one location in mice (2.5 mm ML, 3.5 mm 
AP from the bregma)48. For rat injections, the suspension (200 nl con-
taining 0.2–8.0 × 1015 viral particles) was injected at three different 
depths (1,100, 1,350 and 1,500 μm from the cortical surface) with a 
microsyringe pump controller (Micro4, World Precision Instruments) 
operating at a rate of 50 nl min–1 and 10 μl Hamilton syringe. In mice, 
the AAV suspension (1 μl containing 0.2–8.0 × 1015 viral particles) was 
injected at 400 μm from the cortical surface at a rate of 100 nl min–1.

In vivo extracellular recordings
One month after AAV injections, a small craniotomy (5 × 5 mm2) was 
performed above V1 in the right hemisphere48. The tdTomato fluo-
rescence was checked with a MICRON IV retinal imaging microscope 
and Micron Discover v. 2.2 (Phoenix Research Laboratories). A 32 site 
μEcog electrode array (electrode diameter, 30 μm; electrode spacing, 
300 μm; FlexMEA36, MultiChannel Systems) was positioned over the 
transfected region or in a similar zone for control rats. MEA recordings 
were performed with a 16 site silicon microprobe tilted at 45° to the 
brain surface (electrode diameter, 30 μm; spacing, 50 μm; A1x16-
5mm-50-703, NeuroNexus Technologies) and MC_Rack v. 4.6.2. The 
MEA was advanced 1,100 μm into the cortex with a three-axis micro-
manipulator (Sutter Instruments). US transducers were coupled to the 
brain with a custom-made coupling cone filled with degassed water 
and US gel on a motorized stage. The distance between the cortex and 
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transducer was equal to the focal length of the transducer. Visual stim-
uli were generated by a white-light-collimated light-emitting diode 
(MNWHL4, Thorlabs) placed 15 cm away from the eye (4.5 mW cm–2 at 
the cornea). Recordings were digitized with 32 channel and 16 chan-
nel amplifiers (model ME32/16-FAI-μPA, MultiChannel Systems). The 
μEcog recordings were analysed with custom-developed MATLAB 
scripts and the MEA recordings were analysed with Spyking CIRCUS 
software and custom-developed MATLAB scripts. The response dura-
tion was calculated as the interval between the two time points at 
which the cortical-evoked potential was equal to A/e. The activated 
area was defined as the area of the pseudocolour activation map over 
which peak depolarization exceeded the background-noise level cal-
culated as 2 × s.d. of the signal. The response centre was estimated by 
weighting the peak depolarization of each electrode by its distance 
from the other electrodes. Its relative displacement when moving 
the US transducer was calculated as the Euclidean distance of the two 
positions. For intracortical recordings, cell latency was estimated as 
the time between stimulus onset and the maximum of the derivative 
of SDF.

Surgery for in vivo behavioural testing
C57BL6J mice were subcutaneously injected with buprenorphine 
(0.05 mg kg–1) (Buprécare, Axience), and dexamethasone (0.7 mg kg–1) 
(Dexazone, Virbac). Animals were anaesthetized with isoflurane (5% 
induction and 2% maintenance, in an air/oxygen mixture) and the head 
was shaved and cleaned with an antiseptic solution. Animals were head 
fixed on a stereotactic frame with an isoflurane delivery system and 
eye ointment, and a black tissue was applied over the eyes. The body 
temperature was maintained at 37 °C. After a local injection of lidocaïne 
(4 mg kg–1) (Laocaïne, Centravet), an incision was made on the skin. Two 
screws were fixed in the skull, after a small craniotomy (approximately 
5.0 × 5.0 mm2) was performed above V1 in the right hemisphere (0.5 mm 
steel drill) and a cortex buffer was applied. The cortex was covered with 
a TPX plastic sheet (125 μm thick) and sealed with dental acrylic cement 
(Tetric Evoflow). For behavioural experiments, a metallic headbar 
(PhenoSys) for head fixation was then glued to the skull on the left 
hemisphere with dental cement (FujiCEM 2). Animals were placed in 
a recovery chamber, with a subcutaneous injection of physiological 
serum and ointment on the eyes (Ophtalon, Centravet). Buprenorphine 
was injected during post-surgery monitoring.

Mouse behavioural tests
Mice were placed on a water restriction schedule until they reached 
approximately 80–85% of their weight. Following habituation to the 
test conditions36, mice were trained to respond to an LS by performing 
a voluntary detection task: licking a waterspout (blunt 18 gauge nee-
dle, approximately 5 mm from the mouth) in response to white-light 
full-field stimulation (200 and 50 ms long) of the left eye (dilated 
with tropicamide, Mydriaticum Dispersa) over 35 trials per stimu-
lation duration and therefore 70 trials per day. Water (~4 μl) was 
automatically dispensed 500 ms after the light was switched on, 
through a calibrated water system. The behavioural protocol and 
lick detection were controlled by a custom-made system36. The next 
four days (two-day break during the weekend), US stimulations were 
delivered on V1 for 50 ms at three different pressure values (0.2, 0.7 
and 1.2 MPa). These pressure values were delivered in a different order 
each day (35 trials each). The intertrial intervals randomly varied and 
ranged between 10 and 30 s. The 15 MHz US transducer was coupled to 
the brain with a custom-made coupling cone filled with water and US 
gel. The success rate was calculated by counting the number of trials in 
which the mice performed anticipatory licks (between stimulus onset 
and the opening of the water valve). The anticipatory lick rate (Fig. 6e) 
for the session was calculated by subtraction from the anticipatory 
lick rate of a trial, the spontaneous lick rate (calculated on all the 1 s 
time windows before each individual stimulus onset (Fig. 6a) for all 

the trials) and multiplication by the success rate. Lick latency was 
calculated by determining the time to the first anticipatory lick after 
stimulus onset. The mice retained for analysis presented a success 
rate superior or equal to 60% on the fourth day following LS. Then, 
light or US sessions showing a compulsive licking behaviour were 
excluded based on the outlier identification made using the ROUT 
method (Q = 1%) on the session’s spontaneous lick rate averaging the 
measurements on all the trials of the session in the 1 s time window 
before the stimulus onset of the trial.

Immunohistochemistry and confocal imaging
Samples were incubated overnight at 4 °C with a monoclonal 
anti-RBPMS antibody (1:500, rabbit; ABN1362, Merck Millipore) for 
the retina31, with a monoclonal anti-NeuN antibody (1:500, mouse, 
clone A60; MAB377, Merck Millipore) for brain sections48. The sec-
tions were then incubated with secondary antibodies conjugated with 
Alexa Fluor 488 (1:500, donkey anti-mouse and donkey anti-rabbit IgG 
488, polyclonal; A-21202 and A-21206, Invitrogen, respectively) and 
DAPI (1:1,000; D9542, Merck Millipore) for 1 h at room temperature. 
An Olympus FV1000 confocal microscope with ×20 objective (UPL-
SAPO 20XO with a numerical aperture of 0.85) was used to acquire 
the images of flat-mounted retinas and brain sections (FV10-ASW v. 
4.2 software).

On the confocal images processed with Fiji (ImageJ v. 1.53q), 
RBPMS- and NeuN-positive cells were automatically counted with 
the ‘analyze particles’ plugin. The cells were manually counted by two 
different users, with the ‘cell counter’ plugin. Quantification was per-
formed by acquiring confocal stacks in at least four randomly chosen 
transfected regions of 0.4 mm2 (Extended Data Fig. 1). For V1 neurons, 
the sagittal brain slice with the largest tdTomato fluorescence zone was 
selected for each animal. A region of interest was manually defined in 
V1 and the quantifications were performed in at least six randomly 
chosen regions of 0.4 mm2.

US-induced tissue-heating simulations
A three-fold process was used for the estimation of thermal effects: 
(1) simulation of the acoustic fields generated by the three transduc-
ers, with realistic acoustic parameters; (2) verification that nonlinear 
acoustics did not play an important role in heat transfer; and (3) realistic 
simulations of heat transfer and temperature rise induced at the focus 
by US in a linear regime for the parameters used in this study.

For nonlinear simulations, we used MATLAB’s k-Wave toolbox by 
defining the geometry of the transducer in three dimensions and using 
the following parameters for the propagation medium (water): sound 
speed, c = 1,500 m s–1; volumetric mass, ρ = 1,000 kg m–3; nonlinearity 
coefficient, B/A = 5; attenuation coefficient, α = 2.2 × 10–3 dB cm–1 
MHz–y; frequency power law of the attenuation coefficient, y = 2  
(ref. 51). We simulated quasi-monochromatic 3D wavefields using long 
bursts of 50 cycles; this gave us the maximum pressure field in three 
dimensions as well as the waveform at the focus. Simulations were 
calibrated by adjusting the input pressure (excitation of the simulated 
transducer) to reach the pressure at the focus measured in the water 
tank with real transducers. The full-width at half-maximum (FWHM) 
focal-spot diameter in the x–y plane was 4.360, 1.610 and 0.276 mm, 
and the length of the major axis in the x–z plane was 32.3, 20.6 and 
3.75 mm for the 0.50, 2.25 and 15.00 MHz transducers, respectively 
(Fig. 1b–d). Nonlinear effects were evaluated by estimating the relative 
harmonic content of the waveform at the focus. In the 15 MHz focus 
transducer example in Fig. 1d, the experimental and simulated signals 
at the focal spot were compared and found to be highly concordant 
(Extended Data Fig. 4a). Furthermore, the amplitude of the second 
harmonic is 19.8 dB below the fundamental (20.9 dB in the simulated 
case), meaning that if the fundamental energy is E, the second harmonic 
has energy E/95 (Extended Data Fig. 4b). Therefore, we can reasonably 
neglect the nonlinear effects in the calculations of the thermal effects, 
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as they account for ~1% of the energy involved. The same conclusions 
were drawn at 0.5 MHz and 15.0 MHz. Linear wave propagation approxi-
mations considerably decreased the computing cost of the simulations. 
Linear propagation simulations were conducted with the Field II tool-
box in MATLAB52,53, in the monochromatic mode, with the same medium 
properties as k-Wave (water), to obtain the 3D maximum pressure 
fields. These maximum pressure fields were used to build a heating 
source term QUS =

αnpp2
max

ρbcb
, where αnp is the absorption coefficient of the 

brain at the considered frequency (59.04 Np m–1 at 15 MHz, calculated 
from αbrain = 0.21 dB cm–1 MHz–y and y = 1.18), the brain volumetric mass 
ρbrain = 1,046 kg m –3, the brain sound speed c brain = 154 s –1  
and pmax is the 3D maximum pressure field. This source term  
was then used in the resolution of a Penne’s bioheat equation 
ρbrainCbrain ×

∂T
∂t
= div (Kt × ∇T) − ρbloodCbloodPblood (T − Ta) +Q  in k-Wave, 

where Cbrain is the blood specific heat capacity (3,630 J kg–1 °C–1), Kt is 
the brain thermal conductivity (0.51 W m–1 °C–1), ρblood is the blood 
density (1,050 kg m–3), Cblood is the blood specific heat capacity 
(3,617 J kg–1 °C–1), Pblood is the blood perfusion coefficient (9.7 × 10–3 s–1), 
Ta is the arterial temperature (37 °C), Q = QUS + ρbrainγbrain and γbrain is the 
heat generation of the brain tissue (11.37 W kg–1) (refs. 54,55). The initial 
condition for brain temperature was set to T0 = 37 °C.

This simulation corresponds to the worst-case scenario regarding 
the given temperature rise. (1) The acoustic propagation is simulated 
in water only (non-derated value), with a lower attenuation coefficient 
(2.2 × 10–3 dB cm MHz–2.00) than the brain (0.59 dB cm MHz–1.27), even if a 
part of the propagation occurs within the brain. The pmax maps are, there-
fore, overestimated. (2) Thermal absorption is simulated in the brain 
tissue only, with a higher absorption coefficient (0.21 dB cm MHz–1.18)  
than water, even if a part of the maximum pressure field is actually 
located within the water of the acoustic coupling cone. Therefore, 
QUS is slightly overestimated. We mapped the temperature in three 
spatial dimensions and time, and looked for the point of maximum 
temperature rise (Extended Data Fig. 4c–f).

Statistical analysis
Statistical analyses were carried out with Prism software (Prism 9, 
GraphPad). Values are expressed and represented as mean val-
ues ± standard error of the mean (s.e.m.) on figures and in the text, 
unless specified otherwise. Data were analysed in unpaired Welch’s 
t-tests (two tailed) or an unpaired multiple t-test with Sidak–Bonferroni 
correction for multiple comparisons. Statistical tests are provided in 
the figure legends.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data supporting the findings of this study are available within 
the Article and via FigShare at https://figshare.com/projects/ 
Ectopic_expression_of_a_mechanosensitive_channel_confers_ 
spatiotemporal_resolution_to_ultrasound_stimulations_of_neuronal_ 
circuits_for_visual_restoration/154041. All other data are available from  
the corresponding author upon reasonable request. Source data are 
provided with this paper.

Code availability
The custom MATLAB codes are available from the corresponding 
author upon request.
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Extended Data Fig. 1 | Retinal expression of MscL. (a) Whole-mount retina 
expressing MscL WT (red) and labeled with the RGC-specific anti-RBPMS 
antibody (green), with DAPI staining of the nucleus (white). Yellow boxes 
represent the 8 zones selected for the counting of MscL- and RBPMS-positive 

cells. (b) Optical section of a confocal stack showing MscL expression limited 
to the ganglion cell layer. The scale bars represent 1 mm in (a), 50 μm in (b). 
Similar results have been obtained for N = 10 retinas (5 expressing MscL WT and 5 
expressing MscL G22s).
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Extended Data Fig. 2 | Retinal sonogenetic response characteristics for US 
stimuli of different frequencies. (a) Mean distributions of the different RGC 
cell types (ON, OFF, ON-OFF) among short (SL) and long latency (LL) responses 
in retinas (n = 9) expressing MscL (WT and G22s form) following a 15 MHz US 
stimulus (SD: 21.6, 28.0, 21.8 % for SL, 34.7, 19.4, 30.3 % for LL cells, for ON, 
ON-OFF and OFF cells respectively). (b) Mean numbers of RGCs responding 
to a 15 MHz stimulus of increasing acoustic pressure for MscL WT (n = 3), 
MscL G22s (n = 5) and NT (n = 4) retinas (0.39 MPa: * p = 0.0163; 0.54 MPa: 
ns p = 0.1480, * p = 0.0168; 0.74 MPa: ns p = 0.1334, * p = 0.0312; 0.96 MPa: 
* p = 0.0462, * p = 0.0279; 1.15 MPa: ns p = 0.1617, * p = 0.0145; 1.27 MPa: ns 
p = 0.1580, * p = 0.0144; unpaired two-tailed t test between MscL WT and NT 
in gray and MscL-G22s and NT in blue). (c) Scatter plots and geometric means 
of RGC latencies in response to a 15 MHz US stimulus for MscL (n = 300 cells 
SD: 48.8), Blockers+MscL (n = 57 cells, SD: 68.0), P23H + MscL (n = 97 cells, 

SD: 37.5), and NT (n = 41 cells, SD: 27.4) retinas (****, p = 7.3*10-8 for MscL and 
Blockers MscL vs NT and p < .1*10-15 for P23H MscL vs NT, unpaired two-tailed 
t-test on log-transformed values). (d) Cumulative frequency distributions of 
RGC latencies for MscL, Blockers+MscL, P23H + MscL, and NT retinas. (e) Mean 
percentages of cells responding to US stimuli (normalized against the maximum 
number of responsive cells in the experiment) of increasing acoustic pressure for 
0.5 MHz (ns p = 0.1661;* p = 0.0292; * p = 0.0260; ns p = 0.8628; ns p = 0.1316; ns 
p = 0.7731; unpaired t test,), 2.25 MHz (ns p = 0.1474; ns p = 0.0522; * p = 0.0140; 
*** p = 0.0005; **** p < 0.00002; ns p = 0.5000; unpaired t test) and 15 MHz US (* 
p = 0.0382;** p = 0.0065; * p = 0.0218; ns p = 0.8628; ns p = 0.5859; ns p = 0.4223; 
unpaired t test) US. The lower x axis represents the corresponding acoustic 
intensity (Ispta). (f) Mean response latencies of SL cells for 0.5 and 2.25 MHz 
(n = 9 and 8 retinas). Data are presented as mean values + /- SEM.
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Extended Data Fig. 3 | Experimentally measured US pressure fields. US pressure fields near the focus for 0.5, 2.25 and 15 MHz focused transducers, measured in 
water. Color-coded pressure maps in the xy and xz planes, for 0.5, 2.25 and 15 MHz.
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Extended Data Fig. 4 | Simulated acoustic fields and temperature increases. 
(a) Comparison between a water tank measurement at the focus with a 
calibrated hydrophone (black) obtained with the 2.25 MHz transducer and 
reaching -1.11 MPa peak negative pressure, and a simulated waveform at the 
focus (blue) reaching the same negative pressure. The two waveforms match 
very well (0.42% error) ensuring a good match between our simulation setup 
and physical parameters. (b) Power spectral density of the measured (black) 
and simulated (blue) waveforms, showing that simulations can be used to 
estimate the importance of non-linear propagation. A second harmonic 20 dB 
below the fundamental indicates a factor of 100 in terms of energy, meaning 
that absorption can be calculated in a linear approximation. (c-f) Thermal 

simulations are performed in a two-fold process corresponding to a worst-case 
scenario (see methods): propagation in a water medium, and thermal absorption 
in a brain-mimicking medium. (h) 3D temperature map at the end of a 200 ms 
stimulation (at 15 MHz and 1.27 MPa). (d) Temperature rise at the focus for a 
15 MHz 200 ms stimulation with the 7 pressures used in Fig. 1I (0.26, 0.39, 0.54, 
0.74, 0.96, 1.15, 1.27 MPa). A zoom on the increasing curve reveals the fluctuations 
due to the 1 kHz on-off cycles. (e) Temperature rise at the focus for a 15 MHz 
50 ms stimulation with the same 7 pressures. (f) Temperature rise at the focus 
for 15 MHz 10 ms stimulations (1 kHz modulation) at a repetition rate of 8 Hz and 
13 Hz (used in Fig. 3o), for focus pressures of 0.96 MPa and 0.54 MPa.
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Extended Data Fig. 5 | In vivo response displacement to US stimulation. (a) Relative displacement of the activation center to the previous position following 
movement of the US transducer by 0.4 mm in the x and y direction (n = 37 positions on 6 animals). Data are presented as mean values + /- SEM.
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Extended Data Fig. 6 | MscL G22S expression with the US and light-associative 
training in mice. (a) Confocal stack projection of a sagittal brain slice expressing 
MscL G22s-tdTomato (red) and labeled with DAPI (blue). Similar results have been 
obtained on N = 3 animals. (b) Head-fixed and water-restricted mice were trained 
for four days to respond to a full-field stimulation of one eye (200 and 50 ms) 
that preceded a water reward. Mice responded by licking before (anticipation 
— successful trial) or after the delivery of water (failure). The mean success rate 
increased progressively and mice learned the task (upon 50 ms and 200 ms light 
stimulation) after four days of training (ns p = 0.9387, two-tailed unpaired t test, 
Mean: 27.9, 45.4, 77.1, 88.8, SD: 17.4, 24.8, 23.6, 10.4% for 200 ms, Mean: 30.7, 
54.2, 75.9, 88.5, SD: 22.2, 31.0, 17.5, 12.8% for 50 ms). (c) Mean rates of successful 

trials in non-transfected (NT) mice for 4 days of training with light stimulation 
(50 ms, LS green) and for 4 days of US stimulation (US orange) (Between Day 4 
LS and Day 5 US: 50 ms 1.2 MPa, ****, p = 0.0000047, two-tailed unpaired t test. 
Between Day 5 US and Day 8 US: 50 ms 1.2 MPa, ns, p = 0.1850. Mean: 30.5, 60.3, 
73.6, 91.7, 38.1, 23.5, 14.3, 34.0, SD: 28.2, 31.6, 22.1, 10.3, 18.5, 25.5, 21.1, 24.4 %). (d) 
Pearson correlation scatter plot for time to first lick after either light (LS) or US 
stimulation. (e) Identification and exclusion of outlier sessions (in red) based on 
the ROUT method, (Q = 1%) for the session spontaneous lick rate measured on 
a 1 s time window prior to all trials of the session e Q1 = 0.9 Hz, Median = 1.7 Hz, 
Q3 = 2.8 Hz, Mean= 2.3 Hz, SD = 2.3 Hz. Data are presented as mean values + /- SEM.
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number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.
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Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 

or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, 
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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