Abstract
Layered materials are taking centre stage in the ever-increasing research effort to develop material platforms for quantum technologies. We are at the dawn of the era of layered quantum materials. Their optical, electronic, magnetic, thermal and mechanical properties make them attractive for most aspects of this global pursuit. Layered materials have already shown potential as scalable components, including quantum light sources, photon detectors and nanoscale sensors, and have enabled research of new phases of matter within the broader field of quantum simulations. In this Review we discuss opportunities and challenges faced by layered materials within the landscape of material platforms for quantum technologies. In particular, we focus on applications that rely on light–matter interfaces.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Acín, A. et al. The quantum technologies roadmap: a European community view. New J. Phys. 20, 080201 (2018).
Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).
Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).
Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38–51 (2018).
Gangloff, D. A. et al. Quantum interface of an electron and a nuclear ensemble. Science 364, 62–66 (2019).
Gangloff, D. A. et al. Witnessing quantum correlations in a nuclear ensemble via an electron spin qubit. Nat. Phys. 17, 1247–1253 (2021).
Zaporski, L. et al. Ideal refocusing of an optically active spin qubit under strong hyperfine interactions. Nat. Nanotechnol. 18, 257–263 (2023).
Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. L. Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013).
Bhaskar, M. K. et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Phys. Rev. Lett. 118, 223603 (2017).
Trusheim, M. E. et al. Transform-limited photons from a coherent tin-vacancy spin in diamond. Phys. Rev. Lett. 124, 023602 (2020).
Higginbottom, D. B. et al. Optical observation of single spins in silicon. Nature 607, 266–270 (2022).
Bergeron, L. et al. Silicon-integrated telecommunications photon–spin interface. PRX Quantum 1, 020301 (2020).
Chartrand, C. et al. Highly enriched 28Si reveals remarkable optical linewidths and fine structure for well-known damage centers. Phys. Rev. B 98, 195201 (2018).
Babin, C. et al. Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence. Nat. Mater. 21, 67–73 (2022).
Christle, D. J. et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X 7, 021046 (2017).
Bourassa, A. et al. Entanglement and control of single nuclear spins in isotopically engineered silicon carbide. Nat. Mater. 19, 1319–1325 (2020).
Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).
Raha, M. et al. Optical quantum nondemolition measurement of a single rare earth ion qubit. Nat. Commun. 11, 1605 (2020).
Kornher, T. et al. Sensing individual nuclear spins with a single rare-earth electron spin. Phys. Rev. Lett. 124, 170402 (2020).
Högele, A., Galland, C., Winger, M. & Imamoglu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).
Ishii, A. et al. Enhanced single-photon emission from carbon-nanotube dopant states coupled to silicon microcavities. Nano Lett. 18, 3873–3878 (2018).
Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).
Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).
Gjerding, M. N. et al. Recent progress of the Computational 2D Materials Database (C2DB). 2D Mater. 8, 044002 (2021).
Iyengar, S. A., Puthirath, A. B. & Swaminathan, V. Realizing quantum technologies in nanomaterials and nanoscience. Adv. Mater. 2022, 2107839 (2022).
Wang, G. et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).
Cassabois, G., Valvin, P. & Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photon. 10, 262–266 (2016).
Backes, C. et al. Production and processing of graphene and related materials. 2D Mater. 7, 022001 (2020).
Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).
Brotons-Gisbert, M., Martínez-Pastor, J. P., Ballesteros, G. C., Gerardot, B. D. & Sánchez-Royo, J. F. Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes. Nanophotonics 7, 253–267 (2018).
Tonndorf, P. et al. On-chip waveguide coupling of a layered semiconductor single-photon source. Nano Lett. 17, 5446–5451 (2017).
Cai, T. et al. Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons. Nano Lett. 17, 6564–6568 (2017).
Tran, T. T. et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett. 17, 2634–2639 (2017).
Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).
Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).
Stern, H. L. et al. Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat. Commun. 13, 618 (2022).
Seifert, P. et al. Magic-angle bilayer graphene nanocalorimeters: toward broadband, energy-resolving single photon detection. Nano Lett. 20, 3459–3464 (2020).
Tonndorf, P. et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2, 347–352 (2015).
Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).
Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).
Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).
He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).
Palacios-Berraquero, C. et al. Atomically thin quantum light-emitting diodes. Nat. Commun. 7, 12978 (2016).
Yu, L. et al. Site-controlled quantum emitters in monolayer MoSe2. Nano Lett. 21, 2376–2381 (2021).
Klein, J. et al. Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation. Nat. Commun. 10, 2755 (2019).
Zhao, H., Pettes, M. T., Zheng, Y. & Htoon, H. Site-controlled telecom-wavelength single-photon emitters in atomically-thin MoTe2. Nat. Commun. 12, 6753 (2021).
Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).
Montblanch, A. R.-P. et al. Confinement of long-lived interlayer excitons in WS2/WSe2 heterostructures. Commun. Phys. 4, 119 (2021).
Kremser, M. et al. Discrete interactions between a few interlayer excitons trapped at a MoSe2–WSe2 heterointerface. npj 2D Mater. Appl. 4, 8 (2020).
Zhaon, H. et al. Manipulating interlayer excitons for ultra-pure near-infrared quantum light generation. Preprint at https://arxiv.org/abs/2205.02472 (2022).
Wang, W. & Ma, X. Strain-induced trapping of indirect excitons in MoSe2/WSe2 heterostructures. ACS Photon. 7, 2460–2467 (2020).
Baek, H. et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).
Tonndorf, P. et al. Single-photon emitters in GaSe. 2D Mater. 4, 021010 (2017).
Mudd, G. W. et al. The direct-to-indirect band gap crossover in two-dimensional van der Waals indium selenide crystals. Sci. Rep. 6, 39619 (2016).
Feuer, M. S. G. et al. Identification of exciton complexes in a charge-tunable Janus WSeS monolayer. ACS Nano 17, 7326–7334 (2023).
Luo, Y., Liu, N., Li, X., Hone, J. C. & Strauf, S. Single photon emission in WSe2 up 160 K by quantum yield control. 2D Mater. 6, 035017 (2019).
Parto, K., Azzam, S. I., Banerjee, K. & Moody, G. Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 12, 3585 (2021).
Palacios-Berraquero, C. et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017).
Kumar, S. et al. Resonant laser spectroscopy of localized excitons in monolayer WSe2. Optica 3, 882–886 (2016).
Barbone, M. et al. Charge-tuneable biexciton complexes in monolayer WSe2. Nat. Commun. 9, 3721 (2018).
Mostaani, E. et al. Charge-carrier complexes in monolayer semiconductors. Preprint at https://arxiv.org/abs/2209.01593 (2022).
Branny, A., Kumar, S., Proux, R. & Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017).
Luo, Y. et al. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 13, 1137–1142 (2018).
Rosenberger, M. R. et al. Quantum calligraphy: writing single-photon emitters in a two-dimensional materials platform. ACS Nano 13, 904–912 (2019).
Flatten, L. C. et al. Microcavity enhanced single photon emission from two-dimensional WSe2. Appl. Phys. Lett. 112, 191105 (2018).
Iff, O. et al. Deterministic coupling of quantum emitters in WSe2 monolayers to plasmonic nanocavities. Opt. Express 26, 25944–25951 (2018).
Chakraborty, C. et al. Quantum-confined Stark effect of individual defects in a van der Waals heterostructure. Nano Lett. 17, 2253–2258 (2017).
Kim, H., Moon, J. S., Noh, G., Lee, J. & Kim, J.-H. Position and frequency control of strain-induced quantum emitters in WSe2 monolayers. Nano Lett. 19, 7534–7539 (2019).
Iff, O. et al. Strain-tunable single photon sources in WSe2 monolayers. Nano Lett. 19, 6931–6936 (2019).
Lindlau, J. et al. The role of momentum-dark excitons in the elementary optical response of bilayer WSe2. Nat. Commun. 9, 2586 (2018).
Zhang, S. et al. Defect structure of localized excitons in a WSe2 monolayer. Phys. Rev. Lett. 119, 046101 (2017).
Linhart, L. et al. Localized intervalley defect excitons as single-photon emitters in WSe2. Phys. Rev. Lett. 123, 146401 (2019).
Xu, Y. et al. Creation of moiré bands in a monolayer semiconductor by spatially periodic dielectric screening. Nat. Mater. 20, 645–649 (2021).
Moon, H. et al. Strain-correlated localized exciton energy in atomically thin semiconductors. ACS Photon. 7, 1135–1140 (2020).
Darlington, T. P. et al. Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nat. Nanotechnol. 15, 854–860 (2020).
Gelly, R. J. et al. Probing dark exciton navigation through a local strain landscape in a WSe2 monolayer. Nat. Commun. 13, 232 (2022).
Chakraborty, C., Goodfellow, K. M. & Vamivakas, A. N. Localized emission from defects in MoSe2 layers. Opt. Mater. Express 6, 2081–2087 (2016).
Branny, A. et al. Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics, and charge tuning. Appl. Phys. Lett. 108, 142101 (2016).
Wang, W., Jones, L. O., Chen, J.-S., Schatz, G. C. & Ma, X. Utilizing ultraviolet photons to generate single-photon emitters in semiconductor monolayers. ACS Nano 16, 21240–21247 (2022).
Klein, J. et al. Engineering the luminescence and generation of individual defect emitters in atomically thin MoS2. ACS Photon. 8, 669–677 (2021).
Barthelmi, K. et al. Atomistic defects as single-photon emitters in atomically thin MoS2. Appl. Phys. Lett. 117, 070501 (2020).
Hötger, A. et al. Gate-switchable arrays of quantum light emitters in contacted monolayer MoS2 van der Waals heterodevices. Nano Lett. 21, 1040–1046 (2021).
Ye, Y. et al. Single photon emission from deep-level defects in monolayer WS2. Phys. Rev. B 95, 245313 (2017).
Daveau, R. S. et al. Spectral and spatial isolation of single tungsten diselenide quantum emitters using hexagonal boron nitride wrinkles. APL Photon. 5, 096105 (2020).
Cadiz, F. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).
Iff, O. et al. Substrate engineering for high-quality emission of free and localized excitons from atomic monolayers in hybrid architectures. Optica 4, 669–673 (2017).
Abidi, I. H. et al. Selective defect formation in hexagonal boron nitride. Adv. Opt. Mater. 7, 1900397 (2019).
Ngoc My Duong, H. et al. Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride. ACS Appl. Mater. Interfaces 10, 24886–24891 (2018).
Tawfik, S. A. et al. First-principles investigation of quantum emission from hBN defects. Nanoscale 9, 13575–13582 (2017).
Gottscholl, A. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540–545 (2020).
Meuret, S. et al. Photon bunching in cathodoluminescence. Phys. Rev. Lett. 114, 197401 (2015).
Li, X. et al. Nonmagnetic quantum emitters in boron nitride with ultranarrow and sideband-free emission spectra. ACS Nano 11, 6652–6660 (2017).
Hayee, F. et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater. 19, 534–539 (2020).
Mendelson, N. et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat. Mater. 20, 321–328 (2021).
Li, K., Smart, T. J. & Ping, Y. Carbon trimer as a 2 eV single-photon emitter candidate in hexagonal boron nitride: a first-principles study. Phys. Rev. Mater. 6, L042201 (2022).
Golami, O. et al. Ab initio and group theoretical study of properties of a carbon trimer defect in hexagonal boron nitride. Phys. Rev. B 105, 184101 (2022).
Tan, Q. et al. Donor–acceptor pair quantum emitters in hexagonal boron nitride. Nano Lett. 22, 1331–1337 (2022).
Mendelson, N., Doherty, M., Toth, M., Aharonovich, I. & Tran, T. T. Strain-induced modification of the optical characteristics of quantum emitters in hexagonal boron nitride. Adv. Mater. 32, 1908316 (2020).
Xia, Y. et al. Room-temperature giant Stark effect of single photon emitter in van der Waals material. Nano Lett. 19, 7100–7105 (2019).
White, S. J. U. et al. Electrical control of quantum emitters in a Van der Waals heterostructure. Light Sci. Appl. 11, 186 (2022).
Li, X., Scully, R. A., Shayan, K., Luo, Y. & Strauf, S. Near-unity light collection efficiency from quantum emitters in boron nitride by coupling to metallo-dielectric antennas. ACS Nano 13, 6992–6997 (2019).
Vogl, T., Lecamwasam, R., Buchler, B. C., Lu, Y. & Lam, P. K. Compact cavity-enhanced single-photon generation with hexagonal boron nitride. ACS Photon. 6, 1955–1962 (2019).
Fröch, J. E. et al. Coupling hexagonal boron nitride quantum emitters to photonic crystal cavities. ACS Nano 14, 7085–7091 (2020).
Kim, S. et al. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 9, 2623 (2018).
Chejanovsky, N. et al. Single-spin resonance in a van der Waals embedded paramagnetic defect. Nat. Mater. 20, 1079–1084 (2021).
Exarhos, A. L., Hopper, D. A., Patel, R. N., Doherty, M. W. & Bassett, L. C. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat. Commun. 10, 222 (2019).
Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).
Karni, O. et al. Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Phys. Rev. Lett. 123, 247402 (2019).
Zhang, Y. et al. Every-other-layer dipolar excitons in a spin–valley locked superlattice. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01350-1 (2023).
Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).
Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).
Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).
Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).
Huang, D., Choi, J., Shih, C.-K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).
Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit-coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).
Brotons-Gisbert, M. et al. Spin–layer locking of interlayer excitons trapped in moiré potentials. Nat. Mater. 19, 630–636 (2020).
Li, F., Wei, W., Zhao, P., Huang, B. & Dai, Y. Electronic and optical properties of pristine and vertical and lateral heterostructures of Janus MoSSe and WSSe. J. Phys. Chem. Lett. 8, 5959–5965 (2017).
Lu, A.-Y. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017).
Qin, Y. et al. Reaching the excitonic limit in 2D Janus monolayers by in situ deterministic growth. Adv. Mater. 34, 2106222 (2022).
Gan, Z. et al. Chemical vapor deposition of high-optical-quality large-area monolayer Janus transition metal dichalcogenides. Adv. Mater. 34, 2205226 (2022).
Van Tuan, D. et al. Six-Body and Eight-Body Exciton States in Monolayer WSe2. Phys. Rev. Lett. 129, 076801 (2022).
Gao, T., v. Helversen, M., Anton-Solanas, C., Schneider, C. & Heindel, T. Atomically-thin single-photon sources for quantum communication. npj 2D Mater. Appl. 7, 4 (2022).
So, J.-P. et al. Polarization control of deterministic single-photon emitters in monolayer WSe2. Nano Lett. 21, 1546–1554 (2021).
White, D. et al. Atomically-thin quantum dots integrated with lithium niobate photonic chips. Opt. Mater. Express 9, 441–448 (2019).
Peyskens, F., Chakraborty, C., Muneeb, M., Van Thourhout, D. & Englund, D. Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. 10, 4435 (2019).
Kianinia, M. et al. Robust solid-state quantum system operating at 800 K. ACS Photon. 4, 768–773 (2017).
Vogl, T. et al. Radiation tolerance of two-dimensional material-based devices for space applications. Nat. Commun. 10, 1202 (2019).
Vogl, T., Knopf, H., Weissflog, M., Lam, P. K. & Eilenberger, F. Sensitive single-photon test of extended quantum theory with two-dimensional hexagonal boron nitride. Phys. Rev. Res. 3, 013296 (2021).
Zeng, H. Z. J. et al. Integrated room temperature single-photon source for quantum key distribution. Opt. Lett. 47, 1673–1676 (2022).
Samaner, Ç., Paçal, S., Mutlu, G., Uyanık, K. & Ates, S. Free-space quantum key distribution with single photons from defects in hexagonal boron nitride. Adv. Quantum Technol. 5, 2200059 (2022).
Brotons-Gisbert, M. et al. Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir. Nat. Nanotechnol. 14, 442–446 (2019).
Mukherjee, A. et al. Observation of site-controlled localized charged excitons in CrI3/WSe2 heterostructures. Nat. Commun. 11, 5502 (2020).
He, Y.-M. et al. Cascaded emission of single photons from the biexciton in monolayered WSe2. Nat. Commun. 7, 13409 (2016).
Young, R. J. et al. Entangled photons from the biexciton cascade of quantum dots. J. Appl. Phys. 101, 081711 (2007).
Dey, P. et al. Gate-controlled spin–valley locking of resident carriers in WSe2 monolayers. Phys. Rev. Lett. 119, 137401 (2017).
Lu, X. et al. Optical initialization of a single spin–valley in charged WSe2 quantum dots. Nat. Nanotechnol. 14, 426–431 (2019).
Wang, Y. et al. Spin–valley locking effect in defect states of monolayer MoS2. Nano Lett. 20, 2129–2136 (2020).
Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).
Morell, N. et al. High quality factor mechanical resonators based on WSe2 monolayers. Nano Lett. 16, 5102–5108 (2016).
Xie, H. et al. Tunable exciton–optomechanical coupling in suspended monolayer MoSe2. Nano Lett. 21, 2538–2543 (2021).
Bereyhi, M. J. et al. Perimeter modes of nanomechanical resonators exhibit quality factors exceeding 109 at room temperature. Phys. Rev. X 12, 021036 (2022).
Beccari, A. et al. Strained crystalline nanomechanical resonators with quality factors above 10 billion. Nat. Phys. 18, 436–441 (2022).
Patel, S. D. et al. Surface acoustic wave cavity optomechanics with WSe2 single photon emitters. Preprint at https://arxiv.org/abs/2211.15811 (2022).
Kolkowitz, S. et al. Coherent sensing of a mechanical resonator with a single-spin qubit. Science 335, 1603–1606 (2012).
Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003).
Marletto, C. & Vedral, V. Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity. Phys. Rev. Lett. 119, 240402 (2017).
Exarhos, A. L., Hopper, D. A., Grote, R. R., Alkauskas, A. & Bassett, L. C. Optical signatures of quantum emitters in suspended hexagonal boron nitride. ACS Nano 11, 3328–3336 (2017).
Gottscholl, A. et al. Room temperature coherent control of spin defects in hexagonal boron nitride. Sci. Adv. 7, eabf3630 (2021).
Gottscholl, A. et al. Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors. Nat. Commun. 12, 4480 (2021).
Gao, X. et al. High-contrast plasmonic-enhanced shallow spin defects in hexagonal boron nitride for quantum sensing. Nano Lett. 21, 7708–7714 (2021).
Dovzhenko, Y. et al. Magnetostatic twists in room-temperature skyrmions explored by nitrogen–vacancy center spin texture reconstruction. Nat. Commun. 9, 2712 (2018).
Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).
Healey, A. J. et al. Quantum microscopy with van der Waals heterostructures. Nat. Phys. 19, 87–91 (2023).
Mahdikhanysarvejahany, F. et al. Localized interlayer excitons in MoSe2–WSe2 heterostructures without a moiré potential. Nat. Commun. 13, 5354 (2022).
Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).
Wang, X. et al. Light-induced ferromagnetism in moiré superlattices. Nature 604, 468–473 (2022).
Husimi, K. & Syôzi, I. The statistics of honeycomb and triangular lattice. I. Prog. Theor. Phys. 5, 177–186 (1950).
Kanamori, J. Electron correlation and ferromagnetism of transition metals. Prog. Theor. Phys. 30, 275–289 (1963).
Sun, B. et al. Evidence for equilibrium exciton condensation in monolayer WTe2. Nat. Phys. 18, 94–99 (2022).
Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).
Yagmurcukardes, M. et al. Quantum properties and applications of 2D Janus crystals and their superlattices. Appl. Phys. Rev. 7, 011311 (2020).
Riis-Jensen, A. C., Pandey, M. & Thygesen, K. S. Efficient charge separation in 2D Janus van der Waals structures with built-in electric fields and intrinsic p–n doping. J. Phys. Chem. C. 122, 24520–24526 (2018).
Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).
Guo, H., Zhang, X. & Lu, G. Tuning moiré excitons in Janus heterobilayers for high-temperature Bose–Einstein condensation. Sci. Adv. 8, eabp9757 (2022).
Zhang, Z. et al. Endoepitaxial growth of monolayer mosaic heterostructures. Nat. Nanotechnol. 17, 493–499 (2022).
Guo, Y. et al. Designing artificial two-dimensional landscapes via atomic-layer substitution. Proc. Natl Acad. Sci. USA 118, e2106124118 (2021).
Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).
Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009).
Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).
Cheng, R. et al. Broadband on-chip single-photon spectrometer. Nat. Commun. 10, 4104 (2019).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Cao, Y. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 15, 4914–4921 (2015).
Orchin, G. J. et al. Niobium diselenide superconducting photodetectors. Appl. Phys. Lett. 114, 251103 (2019).
Seifert, P. et al. A high-Tc van der Waals superconductor based photodetector with ultra-high responsivity and nanosecond relaxation time. 2D Mater. 8, 035053 (2021).
Lee, G.-H. et al. Graphene-based Josephson junction microwave bolometer. Nature 586, 42–46 (2020).
Walsh, E. D. et al. Josephson junction infrared single-photon detector. Science 372, 409–412 (2021).
Zhang, S. et al. Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides. Nat. Commun. 13, 542 (2022).
Avdeev, I. D. & Smirnov, D. S. Hyperfine interaction in atomically thin transition metal dichalcogenides. Nanoscale Adv. 1, 2624–2632 (2019).
Winter, M. Molybdenum: isotope data. WebElements http://www.webelements.com/molybdenum/isotopes.html (2023).
Fanciulli, M. Electron paramagnetic resonance and relaxation in BN and BN:C. Philos. Mag. B 76, 363–381 (1997).
Katzir, A., Suss, J. T., Zunger, A. & Halperin, A. Point defects in hexagonal boron nitride. EPR, thermoluminescence, and thermally-stimulated-current measurements. Phys. Rev. B 11, 2370–2377 (1975).
Murzakhanov, F. F. et al. Electron–nuclear coherent coupling and nuclear spin readout through optically polarized V−B spin states in hBN. Nano Lett. 22, 2718–2724 (2022).
Gao, X. et al. Nuclear spin polarization and control in hexagonal boron nitride. Nat. Mater. 21, 1024–1028 (2022).
Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).
Hermans, S. L. N. et al. Qubit teleportation between non-neighbouring nodes in a quantum network. Nature 605, 663–668 (2022).
Hermans, S. L. N. et al. Entangling remote qubits using the single-photon protocol: an in-depth theoretical and experimental study. New J. Phys. 25, 013011 (2023).
Michaels, C. P. et al. Multidimensional cluster states using a single spin–photon interface coupled strongly to an intrinsic nuclear register. Quantum 5, 565 (2021).
Raussendorf, R., Browne, D. E. & Briegel, H. J. Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003).
Song, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 374, 1140–1144 (2021).
Li, W. et al. Local sensing of correlated electrons in dual-moiré heterostructures using dipolar excitons. Preprint at https://arxiv.org/abs/2111.09440 (2021).
Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).
Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020).
Dirnberger, F. et al. Quasi-1D exciton channels in strain-engineered 2D materials. Sci. Adv. 7, eabj3066 (2021).
Sahoo, P. K., Memaran, S., Xin, Y., Balicas, L. & Gutiérrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553, 63–67 (2018).
Voiry, D., Mohite, A. & Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015).
Stefan, L. et al. Multiangle reconstruction of domain morphology with all-optical diamond magnetometry. Phys. Rev. Appl. 16, 014054 (2021).
Errando-Herranz, C. et al. Resonance fluorescence from waveguide-coupled, strain-localized, two-dimensional quantum emitters. ACS Photon. 8, 1069–1076 (2021).
Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).
Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).
Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).
Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).
Healey, A. J. et al. Quantum microscopy with van der Waals heterostructures. Nat. Phys. 19, 87–91 (2023).
Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).
Wang, D. et al. Turning a molecule into a coherent two-level quantum system. Nat. Phys. 15, 483–489 (2019).
Magnard, P. et al. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems. Phys. Rev. Lett. 125, 260502 (2020).
Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).
Hahn, E. L. Spin echoes. Phys. Rev. 80, 580–594 (1950).
Acknowledgements
We thank H. Beukers, J. M. Brevoord, A. Das, D. De Fazio, M. del Castillo, N. Demetriou, M. Feuer, R. Flaschmann, D. Gangloff, A. Gio-Pardo, M. Gündogan, S. Hermans, M. Iuliano, J. Jozan-Baldovinos, D. M. Kara, J. Klein, J. Knörzer, S. Loenen, C. Martínez, S. Marzban, A. Mortadelo-Filemón, K. Müller, B. Panh, M. Pasini, M. Petric, B. Pingault, N. Shofer, T. Simmet, L. Stefan, G. van de Stolpe, H. B. van Ommen and A. Kok Cheng Tan for useful discussions. We acknowledge funding from ERC grants Hetero2D, GSYNCOR and GIPT, EPSRC grants EP/K01711X/1, EP/K017144/1, EP/N010345/1, EP/L016087/1, EP/X015742/1, and EP/V000055/1, EU Graphene and Quantum Flagships, EU grants CHARM and Graph-X, the Alexander von Humboldt Foundation, the Australian Research Council (CE200100010, FT220100053) and the Office of Naval Research Global (N62909-22-1-2028).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Nanotechnology thanks Kuan Eng Johnson Goh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Tables 1–12.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Montblanch, A.RP., Barbone, M., Aharonovich, I. et al. Layered materials as a platform for quantum technologies. Nat. Nanotechnol. 18, 555–571 (2023). https://doi.org/10.1038/s41565-023-01354-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41565-023-01354-x
This article is cited by
-
Tunable moiré materials for probing Berry physics and topology
Nature Reviews Materials (2024)
-
Tailoring polarization in WSe2 quantum emitters through deterministic strain engineering
npj 2D Materials and Applications (2024)
-
Dipolar many-body complexes and their interactions in stacked 2D heterobilayers
Nature Reviews Physics (2024)
-
A leap to highly efficient 2D quantum emitters
Nature Photonics (2024)
-
A substitutional quantum defect in WS2 discovered by high-throughput computational screening and fabricated by site-selective STM manipulation
Nature Communications (2024)