Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Layered materials as a platform for quantum technologies

Abstract

Layered materials are taking centre stage in the ever-increasing research effort to develop material platforms for quantum technologies. We are at the dawn of the era of layered quantum materials. Their optical, electronic, magnetic, thermal and mechanical properties make them attractive for most aspects of this global pursuit. Layered materials have already shown potential as scalable components, including quantum light sources, photon detectors and nanoscale sensors, and have enabled research of new phases of matter within the broader field of quantum simulations. In this Review we discuss opportunities and challenges faced by layered materials within the landscape of material platforms for quantum technologies. In particular, we focus on applications that rely on light–matter interfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Layered quantum materials and optics-based quantum technologies.
Fig. 2: Exciton landscape in transition-metal dichalcogenides.
Fig. 3: Generation and photoluminescence spectra of single-photon emitters in monolayer transition-metal dichalcogenides and in hBN.
Fig. 4: Quantum communications with layered quantum materials.
Fig. 5: Spins in transition-metal dichalcogenides and hBN.
Fig. 6: Layered quantum materials for quantum sensing and simulations.
Fig. 7: Some milestones in the evolution of layered quantum materials-based quantum technologies, compared with mature platforms.

Similar content being viewed by others

References

  1. Acín, A. et al. The quantum technologies roadmap: a European community view. New J. Phys. 20, 080201 (2018).

    Article  Google Scholar 

  2. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article  CAS  Google Scholar 

  3. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article  CAS  Google Scholar 

  4. Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38–51 (2018).

    Article  Google Scholar 

  5. Gangloff, D. A. et al. Quantum interface of an electron and a nuclear ensemble. Science 364, 62–66 (2019).

    Article  CAS  Google Scholar 

  6. Gangloff, D. A. et al. Witnessing quantum correlations in a nuclear ensemble via an electron spin qubit. Nat. Phys. 17, 1247–1253 (2021).

    Article  CAS  Google Scholar 

  7. Zaporski, L. et al. Ideal refocusing of an optically active spin qubit under strong hyperfine interactions. Nat. Nanotechnol. 18, 257–263 (2023).

    Article  CAS  Google Scholar 

  8. Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. L. Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013).

    Article  CAS  Google Scholar 

  9. Bhaskar, M. K. et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Phys. Rev. Lett. 118, 223603 (2017).

    Article  CAS  Google Scholar 

  10. Trusheim, M. E. et al. Transform-limited photons from a coherent tin-vacancy spin in diamond. Phys. Rev. Lett. 124, 023602 (2020).

    Article  CAS  Google Scholar 

  11. Higginbottom, D. B. et al. Optical observation of single spins in silicon. Nature 607, 266–270 (2022).

    Article  CAS  Google Scholar 

  12. Bergeron, L. et al. Silicon-integrated telecommunications photon–spin interface. PRX Quantum 1, 020301 (2020).

    Article  Google Scholar 

  13. Chartrand, C. et al. Highly enriched 28Si reveals remarkable optical linewidths and fine structure for well-known damage centers. Phys. Rev. B 98, 195201 (2018).

    Article  CAS  Google Scholar 

  14. Babin, C. et al. Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence. Nat. Mater. 21, 67–73 (2022).

    Article  CAS  Google Scholar 

  15. Christle, D. J. et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X 7, 021046 (2017).

    Google Scholar 

  16. Bourassa, A. et al. Entanglement and control of single nuclear spins in isotopically engineered silicon carbide. Nat. Mater. 19, 1319–1325 (2020).

    Article  CAS  Google Scholar 

  17. Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

    Article  CAS  Google Scholar 

  18. Raha, M. et al. Optical quantum nondemolition measurement of a single rare earth ion qubit. Nat. Commun. 11, 1605 (2020).

    Article  CAS  Google Scholar 

  19. Kornher, T. et al. Sensing individual nuclear spins with a single rare-earth electron spin. Phys. Rev. Lett. 124, 170402 (2020).

    Article  CAS  Google Scholar 

  20. Högele, A., Galland, C., Winger, M. & Imamoglu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).

    Article  Google Scholar 

  21. Ishii, A. et al. Enhanced single-photon emission from carbon-nanotube dopant states coupled to silicon microcavities. Nano Lett. 18, 3873–3878 (2018).

    Article  CAS  Google Scholar 

  22. Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

    Article  CAS  Google Scholar 

  23. Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).

    Article  CAS  Google Scholar 

  24. Gjerding, M. N. et al. Recent progress of the Computational 2D Materials Database (C2DB). 2D Mater. 8, 044002 (2021).

    Article  CAS  Google Scholar 

  25. Iyengar, S. A., Puthirath, A. B. & Swaminathan, V. Realizing quantum technologies in nanomaterials and nanoscience. Adv. Mater. 2022, 2107839 (2022).

    Article  Google Scholar 

  26. Wang, G. et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    Article  CAS  Google Scholar 

  27. Cassabois, G., Valvin, P. & Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photon. 10, 262–266 (2016).

    Article  CAS  Google Scholar 

  28. Backes, C. et al. Production and processing of graphene and related materials. 2D Mater. 7, 022001 (2020).

    Article  CAS  Google Scholar 

  29. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    Article  CAS  Google Scholar 

  30. Brotons-Gisbert, M., Martínez-Pastor, J. P., Ballesteros, G. C., Gerardot, B. D. & Sánchez-Royo, J. F. Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes. Nanophotonics 7, 253–267 (2018).

    Article  Google Scholar 

  31. Tonndorf, P. et al. On-chip waveguide coupling of a layered semiconductor single-photon source. Nano Lett. 17, 5446–5451 (2017).

    Article  CAS  Google Scholar 

  32. Cai, T. et al. Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons. Nano Lett. 17, 6564–6568 (2017).

    Article  CAS  Google Scholar 

  33. Tran, T. T. et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett. 17, 2634–2639 (2017).

    Article  CAS  Google Scholar 

  34. Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    Article  CAS  Google Scholar 

  35. Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

    Article  Google Scholar 

  36. Stern, H. L. et al. Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat. Commun. 13, 618 (2022).

    Article  CAS  Google Scholar 

  37. Seifert, P. et al. Magic-angle bilayer graphene nanocalorimeters: toward broadband, energy-resolving single photon detection. Nano Lett. 20, 3459–3464 (2020).

    Article  CAS  Google Scholar 

  38. Tonndorf, P. et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2, 347–352 (2015).

    Article  CAS  Google Scholar 

  39. Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).

    Article  CAS  Google Scholar 

  40. Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).

    Article  CAS  Google Scholar 

  41. Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

    Article  CAS  Google Scholar 

  42. He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    Article  CAS  Google Scholar 

  43. Palacios-Berraquero, C. et al. Atomically thin quantum light-emitting diodes. Nat. Commun. 7, 12978 (2016).

    Article  CAS  Google Scholar 

  44. Yu, L. et al. Site-controlled quantum emitters in monolayer MoSe2. Nano Lett. 21, 2376–2381 (2021).

    Article  CAS  Google Scholar 

  45. Klein, J. et al. Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation. Nat. Commun. 10, 2755 (2019).

    Article  CAS  Google Scholar 

  46. Zhao, H., Pettes, M. T., Zheng, Y. & Htoon, H. Site-controlled telecom-wavelength single-photon emitters in atomically-thin MoTe2. Nat. Commun. 12, 6753 (2021).

    Article  CAS  Google Scholar 

  47. Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

    Article  CAS  Google Scholar 

  48. Montblanch, A. R.-P. et al. Confinement of long-lived interlayer excitons in WS2/WSe2 heterostructures. Commun. Phys. 4, 119 (2021).

    Article  CAS  Google Scholar 

  49. Kremser, M. et al. Discrete interactions between a few interlayer excitons trapped at a MoSe2–WSe2 heterointerface. npj 2D Mater. Appl. 4, 8 (2020).

    Article  CAS  Google Scholar 

  50. Zhaon, H. et al. Manipulating interlayer excitons for ultra-pure near-infrared quantum light generation. Preprint at https://arxiv.org/abs/2205.02472 (2022).

  51. Wang, W. & Ma, X. Strain-induced trapping of indirect excitons in MoSe2/WSe2 heterostructures. ACS Photon. 7, 2460–2467 (2020).

    Article  CAS  Google Scholar 

  52. Baek, H. et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).

    Article  CAS  Google Scholar 

  53. Tonndorf, P. et al. Single-photon emitters in GaSe. 2D Mater. 4, 021010 (2017).

    Article  Google Scholar 

  54. Mudd, G. W. et al. The direct-to-indirect band gap crossover in two-dimensional van der Waals indium selenide crystals. Sci. Rep. 6, 39619 (2016).

    Article  CAS  Google Scholar 

  55. Feuer, M. S. G. et al. Identification of exciton complexes in a charge-tunable Janus WSeS monolayer. ACS Nano 17, 7326–7334 (2023).

    Article  CAS  Google Scholar 

  56. Luo, Y., Liu, N., Li, X., Hone, J. C. & Strauf, S. Single photon emission in WSe2 up 160 K by quantum yield control. 2D Mater. 6, 035017 (2019).

    Article  CAS  Google Scholar 

  57. Parto, K., Azzam, S. I., Banerjee, K. & Moody, G. Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 12, 3585 (2021).

    Article  CAS  Google Scholar 

  58. Palacios-Berraquero, C. et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017).

    Article  CAS  Google Scholar 

  59. Kumar, S. et al. Resonant laser spectroscopy of localized excitons in monolayer WSe2. Optica 3, 882–886 (2016).

    Article  CAS  Google Scholar 

  60. Barbone, M. et al. Charge-tuneable biexciton complexes in monolayer WSe2. Nat. Commun. 9, 3721 (2018).

    Article  Google Scholar 

  61. Mostaani, E. et al. Charge-carrier complexes in monolayer semiconductors. Preprint at https://arxiv.org/abs/2209.01593 (2022).

  62. Branny, A., Kumar, S., Proux, R. & Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017).

    Article  CAS  Google Scholar 

  63. Luo, Y. et al. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 13, 1137–1142 (2018).

    Article  CAS  Google Scholar 

  64. Rosenberger, M. R. et al. Quantum calligraphy: writing single-photon emitters in a two-dimensional materials platform. ACS Nano 13, 904–912 (2019).

    Article  CAS  Google Scholar 

  65. Flatten, L. C. et al. Microcavity enhanced single photon emission from two-dimensional WSe2. Appl. Phys. Lett. 112, 191105 (2018).

    Article  Google Scholar 

  66. Iff, O. et al. Deterministic coupling of quantum emitters in WSe2 monolayers to plasmonic nanocavities. Opt. Express 26, 25944–25951 (2018).

    Article  CAS  Google Scholar 

  67. Chakraborty, C. et al. Quantum-confined Stark effect of individual defects in a van der Waals heterostructure. Nano Lett. 17, 2253–2258 (2017).

    Article  CAS  Google Scholar 

  68. Kim, H., Moon, J. S., Noh, G., Lee, J. & Kim, J.-H. Position and frequency control of strain-induced quantum emitters in WSe2 monolayers. Nano Lett. 19, 7534–7539 (2019).

    Article  CAS  Google Scholar 

  69. Iff, O. et al. Strain-tunable single photon sources in WSe2 monolayers. Nano Lett. 19, 6931–6936 (2019).

    Article  CAS  Google Scholar 

  70. Lindlau, J. et al. The role of momentum-dark excitons in the elementary optical response of bilayer WSe2. Nat. Commun. 9, 2586 (2018).

    Article  Google Scholar 

  71. Zhang, S. et al. Defect structure of localized excitons in a WSe2 monolayer. Phys. Rev. Lett. 119, 046101 (2017).

    Article  Google Scholar 

  72. Linhart, L. et al. Localized intervalley defect excitons as single-photon emitters in WSe2. Phys. Rev. Lett. 123, 146401 (2019).

    Article  CAS  Google Scholar 

  73. Xu, Y. et al. Creation of moiré bands in a monolayer semiconductor by spatially periodic dielectric screening. Nat. Mater. 20, 645–649 (2021).

    Article  CAS  Google Scholar 

  74. Moon, H. et al. Strain-correlated localized exciton energy in atomically thin semiconductors. ACS Photon. 7, 1135–1140 (2020).

    Article  CAS  Google Scholar 

  75. Darlington, T. P. et al. Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nat. Nanotechnol. 15, 854–860 (2020).

    Article  CAS  Google Scholar 

  76. Gelly, R. J. et al. Probing dark exciton navigation through a local strain landscape in a WSe2 monolayer. Nat. Commun. 13, 232 (2022).

    Article  CAS  Google Scholar 

  77. Chakraborty, C., Goodfellow, K. M. & Vamivakas, A. N. Localized emission from defects in MoSe2 layers. Opt. Mater. Express 6, 2081–2087 (2016).

    Article  CAS  Google Scholar 

  78. Branny, A. et al. Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics, and charge tuning. Appl. Phys. Lett. 108, 142101 (2016).

    Article  Google Scholar 

  79. Wang, W., Jones, L. O., Chen, J.-S., Schatz, G. C. & Ma, X. Utilizing ultraviolet photons to generate single-photon emitters in semiconductor monolayers. ACS Nano 16, 21240–21247 (2022).

    Article  CAS  Google Scholar 

  80. Klein, J. et al. Engineering the luminescence and generation of individual defect emitters in atomically thin MoS2. ACS Photon. 8, 669–677 (2021).

    Article  CAS  Google Scholar 

  81. Barthelmi, K. et al. Atomistic defects as single-photon emitters in atomically thin MoS2. Appl. Phys. Lett. 117, 070501 (2020).

    Article  CAS  Google Scholar 

  82. Hötger, A. et al. Gate-switchable arrays of quantum light emitters in contacted monolayer MoS2 van der Waals heterodevices. Nano Lett. 21, 1040–1046 (2021).

    Article  Google Scholar 

  83. Ye, Y. et al. Single photon emission from deep-level defects in monolayer WS2. Phys. Rev. B 95, 245313 (2017).

    Article  Google Scholar 

  84. Daveau, R. S. et al. Spectral and spatial isolation of single tungsten diselenide quantum emitters using hexagonal boron nitride wrinkles. APL Photon. 5, 096105 (2020).

    Article  CAS  Google Scholar 

  85. Cadiz, F. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).

    Google Scholar 

  86. Iff, O. et al. Substrate engineering for high-quality emission of free and localized excitons from atomic monolayers in hybrid architectures. Optica 4, 669–673 (2017).

    Article  CAS  Google Scholar 

  87. Abidi, I. H. et al. Selective defect formation in hexagonal boron nitride. Adv. Opt. Mater. 7, 1900397 (2019).

    Article  Google Scholar 

  88. Ngoc My Duong, H. et al. Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride. ACS Appl. Mater. Interfaces 10, 24886–24891 (2018).

    Article  CAS  Google Scholar 

  89. Tawfik, S. A. et al. First-principles investigation of quantum emission from hBN defects. Nanoscale 9, 13575–13582 (2017).

    Article  CAS  Google Scholar 

  90. Gottscholl, A. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540–545 (2020).

    Article  CAS  Google Scholar 

  91. Meuret, S. et al. Photon bunching in cathodoluminescence. Phys. Rev. Lett. 114, 197401 (2015).

    Article  CAS  Google Scholar 

  92. Li, X. et al. Nonmagnetic quantum emitters in boron nitride with ultranarrow and sideband-free emission spectra. ACS Nano 11, 6652–6660 (2017).

    Article  CAS  Google Scholar 

  93. Hayee, F. et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater. 19, 534–539 (2020).

    Article  CAS  Google Scholar 

  94. Mendelson, N. et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat. Mater. 20, 321–328 (2021).

    Article  CAS  Google Scholar 

  95. Li, K., Smart, T. J. & Ping, Y. Carbon trimer as a 2 eV single-photon emitter candidate in hexagonal boron nitride: a first-principles study. Phys. Rev. Mater. 6, L042201 (2022).

    Article  CAS  Google Scholar 

  96. Golami, O. et al. Ab initio and group theoretical study of properties of a carbon trimer defect in hexagonal boron nitride. Phys. Rev. B 105, 184101 (2022).

    Article  CAS  Google Scholar 

  97. Tan, Q. et al. Donor–acceptor pair quantum emitters in hexagonal boron nitride. Nano Lett. 22, 1331–1337 (2022).

    Article  CAS  Google Scholar 

  98. Mendelson, N., Doherty, M., Toth, M., Aharonovich, I. & Tran, T. T. Strain-induced modification of the optical characteristics of quantum emitters in hexagonal boron nitride. Adv. Mater. 32, 1908316 (2020).

    Article  CAS  Google Scholar 

  99. Xia, Y. et al. Room-temperature giant Stark effect of single photon emitter in van der Waals material. Nano Lett. 19, 7100–7105 (2019).

    Article  CAS  Google Scholar 

  100. White, S. J. U. et al. Electrical control of quantum emitters in a Van der Waals heterostructure. Light Sci. Appl. 11, 186 (2022).

    Article  CAS  Google Scholar 

  101. Li, X., Scully, R. A., Shayan, K., Luo, Y. & Strauf, S. Near-unity light collection efficiency from quantum emitters in boron nitride by coupling to metallo-dielectric antennas. ACS Nano 13, 6992–6997 (2019).

    Article  CAS  Google Scholar 

  102. Vogl, T., Lecamwasam, R., Buchler, B. C., Lu, Y. & Lam, P. K. Compact cavity-enhanced single-photon generation with hexagonal boron nitride. ACS Photon. 6, 1955–1962 (2019).

    Article  CAS  Google Scholar 

  103. Fröch, J. E. et al. Coupling hexagonal boron nitride quantum emitters to photonic crystal cavities. ACS Nano 14, 7085–7091 (2020).

    Article  Google Scholar 

  104. Kim, S. et al. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 9, 2623 (2018).

    Article  Google Scholar 

  105. Chejanovsky, N. et al. Single-spin resonance in a van der Waals embedded paramagnetic defect. Nat. Mater. 20, 1079–1084 (2021).

    Article  CAS  Google Scholar 

  106. Exarhos, A. L., Hopper, D. A., Patel, R. N., Doherty, M. W. & Bassett, L. C. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat. Commun. 10, 222 (2019).

    Article  Google Scholar 

  107. Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    Article  CAS  Google Scholar 

  108. Karni, O. et al. Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Phys. Rev. Lett. 123, 247402 (2019).

    Article  CAS  Google Scholar 

  109. Zhang, Y. et al. Every-other-layer dipolar excitons in a spin–valley locked superlattice. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01350-1 (2023).

  110. Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    Article  CAS  Google Scholar 

  111. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  CAS  Google Scholar 

  112. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article  CAS  Google Scholar 

  113. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  CAS  Google Scholar 

  114. Huang, D., Choi, J., Shih, C.-K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).

    Article  CAS  Google Scholar 

  115. Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit-coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    Article  Google Scholar 

  116. Brotons-Gisbert, M. et al. Spin–layer locking of interlayer excitons trapped in moiré potentials. Nat. Mater. 19, 630–636 (2020).

    Article  CAS  Google Scholar 

  117. Li, F., Wei, W., Zhao, P., Huang, B. & Dai, Y. Electronic and optical properties of pristine and vertical and lateral heterostructures of Janus MoSSe and WSSe. J. Phys. Chem. Lett. 8, 5959–5965 (2017).

    Article  CAS  Google Scholar 

  118. Lu, A.-Y. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017).

    Article  CAS  Google Scholar 

  119. Qin, Y. et al. Reaching the excitonic limit in 2D Janus monolayers by in situ deterministic growth. Adv. Mater. 34, 2106222 (2022).

    Article  CAS  Google Scholar 

  120. Gan, Z. et al. Chemical vapor deposition of high-optical-quality large-area monolayer Janus transition metal dichalcogenides. Adv. Mater. 34, 2205226 (2022).

    Article  CAS  Google Scholar 

  121. Van Tuan, D. et al. Six-Body and Eight-Body Exciton States in Monolayer WSe2. Phys. Rev. Lett. 129, 076801 (2022).

    Article  CAS  Google Scholar 

  122. Gao, T., v. Helversen, M., Anton-Solanas, C., Schneider, C. & Heindel, T. Atomically-thin single-photon sources for quantum communication. npj 2D Mater. Appl. 7, 4 (2022).

    Article  Google Scholar 

  123. So, J.-P. et al. Polarization control of deterministic single-photon emitters in monolayer WSe2. Nano Lett. 21, 1546–1554 (2021).

    Article  CAS  Google Scholar 

  124. White, D. et al. Atomically-thin quantum dots integrated with lithium niobate photonic chips. Opt. Mater. Express 9, 441–448 (2019).

    Article  CAS  Google Scholar 

  125. Peyskens, F., Chakraborty, C., Muneeb, M., Van Thourhout, D. & Englund, D. Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. 10, 4435 (2019).

    Article  Google Scholar 

  126. Kianinia, M. et al. Robust solid-state quantum system operating at 800 K. ACS Photon. 4, 768–773 (2017).

    Article  CAS  Google Scholar 

  127. Vogl, T. et al. Radiation tolerance of two-dimensional material-based devices for space applications. Nat. Commun. 10, 1202 (2019).

    Article  Google Scholar 

  128. Vogl, T., Knopf, H., Weissflog, M., Lam, P. K. & Eilenberger, F. Sensitive single-photon test of extended quantum theory with two-dimensional hexagonal boron nitride. Phys. Rev. Res. 3, 013296 (2021).

    Article  CAS  Google Scholar 

  129. Zeng, H. Z. J. et al. Integrated room temperature single-photon source for quantum key distribution. Opt. Lett. 47, 1673–1676 (2022).

    Article  CAS  Google Scholar 

  130. Samaner, Ç., Paçal, S., Mutlu, G., Uyanık, K. & Ates, S. Free-space quantum key distribution with single photons from defects in hexagonal boron nitride. Adv. Quantum Technol. 5, 2200059 (2022).

    Article  CAS  Google Scholar 

  131. Brotons-Gisbert, M. et al. Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir. Nat. Nanotechnol. 14, 442–446 (2019).

    Article  CAS  Google Scholar 

  132. Mukherjee, A. et al. Observation of site-controlled localized charged excitons in CrI3/WSe2 heterostructures. Nat. Commun. 11, 5502 (2020).

    Article  CAS  Google Scholar 

  133. He, Y.-M. et al. Cascaded emission of single photons from the biexciton in monolayered WSe2. Nat. Commun. 7, 13409 (2016).

    Article  CAS  Google Scholar 

  134. Young, R. J. et al. Entangled photons from the biexciton cascade of quantum dots. J. Appl. Phys. 101, 081711 (2007).

    Article  Google Scholar 

  135. Dey, P. et al. Gate-controlled spin–valley locking of resident carriers in WSe2 monolayers. Phys. Rev. Lett. 119, 137401 (2017).

    Article  CAS  Google Scholar 

  136. Lu, X. et al. Optical initialization of a single spin–valley in charged WSe2 quantum dots. Nat. Nanotechnol. 14, 426–431 (2019).

    Article  CAS  Google Scholar 

  137. Wang, Y. et al. Spin–valley locking effect in defect states of monolayer MoS2. Nano Lett. 20, 2129–2136 (2020).

    Article  CAS  Google Scholar 

  138. Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    Article  CAS  Google Scholar 

  139. Morell, N. et al. High quality factor mechanical resonators based on WSe2 monolayers. Nano Lett. 16, 5102–5108 (2016).

    Article  CAS  Google Scholar 

  140. Xie, H. et al. Tunable exciton–optomechanical coupling in suspended monolayer MoSe2. Nano Lett. 21, 2538–2543 (2021).

    Article  CAS  Google Scholar 

  141. Bereyhi, M. J. et al. Perimeter modes of nanomechanical resonators exhibit quality factors exceeding 109 at room temperature. Phys. Rev. X 12, 021036 (2022).

    CAS  Google Scholar 

  142. Beccari, A. et al. Strained crystalline nanomechanical resonators with quality factors above 10 billion. Nat. Phys. 18, 436–441 (2022).

    Article  CAS  Google Scholar 

  143. Patel, S. D. et al. Surface acoustic wave cavity optomechanics with WSe2 single photon emitters. Preprint at https://arxiv.org/abs/2211.15811 (2022).

  144. Kolkowitz, S. et al. Coherent sensing of a mechanical resonator with a single-spin qubit. Science 335, 1603–1606 (2012).

    Article  CAS  Google Scholar 

  145. Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003).

    Article  Google Scholar 

  146. Marletto, C. & Vedral, V. Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity. Phys. Rev. Lett. 119, 240402 (2017).

    Article  CAS  Google Scholar 

  147. Exarhos, A. L., Hopper, D. A., Grote, R. R., Alkauskas, A. & Bassett, L. C. Optical signatures of quantum emitters in suspended hexagonal boron nitride. ACS Nano 11, 3328–3336 (2017).

    Article  CAS  Google Scholar 

  148. Gottscholl, A. et al. Room temperature coherent control of spin defects in hexagonal boron nitride. Sci. Adv. 7, eabf3630 (2021).

    Article  CAS  Google Scholar 

  149. Gottscholl, A. et al. Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors. Nat. Commun. 12, 4480 (2021).

    Article  CAS  Google Scholar 

  150. Gao, X. et al. High-contrast plasmonic-enhanced shallow spin defects in hexagonal boron nitride for quantum sensing. Nano Lett. 21, 7708–7714 (2021).

    Article  CAS  Google Scholar 

  151. Dovzhenko, Y. et al. Magnetostatic twists in room-temperature skyrmions explored by nitrogen–vacancy center spin texture reconstruction. Nat. Commun. 9, 2712 (2018).

    Article  CAS  Google Scholar 

  152. Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).

    Article  CAS  Google Scholar 

  153. Healey, A. J. et al. Quantum microscopy with van der Waals heterostructures. Nat. Phys. 19, 87–91 (2023).

    Article  CAS  Google Scholar 

  154. Mahdikhanysarvejahany, F. et al. Localized interlayer excitons in MoSe2–WSe2 heterostructures without a moiré potential. Nat. Commun. 13, 5354 (2022).

    Article  CAS  Google Scholar 

  155. Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  CAS  Google Scholar 

  156. Wang, X. et al. Light-induced ferromagnetism in moiré superlattices. Nature 604, 468–473 (2022).

    Article  CAS  Google Scholar 

  157. Husimi, K. & Syôzi, I. The statistics of honeycomb and triangular lattice. I. Prog. Theor. Phys. 5, 177–186 (1950).

    Article  Google Scholar 

  158. Kanamori, J. Electron correlation and ferromagnetism of transition metals. Prog. Theor. Phys. 30, 275–289 (1963).

    Article  CAS  Google Scholar 

  159. Sun, B. et al. Evidence for equilibrium exciton condensation in monolayer WTe2. Nat. Phys. 18, 94–99 (2022).

    Article  CAS  Google Scholar 

  160. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

    Article  Google Scholar 

  161. Yagmurcukardes, M. et al. Quantum properties and applications of 2D Janus crystals and their superlattices. Appl. Phys. Rev. 7, 011311 (2020).

    Article  CAS  Google Scholar 

  162. Riis-Jensen, A. C., Pandey, M. & Thygesen, K. S. Efficient charge separation in 2D Janus van der Waals structures with built-in electric fields and intrinsic p–n doping. J. Phys. Chem. C. 122, 24520–24526 (2018).

    Article  CAS  Google Scholar 

  163. Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    Article  CAS  Google Scholar 

  164. Guo, H., Zhang, X. & Lu, G. Tuning moiré excitons in Janus heterobilayers for high-temperature Bose–Einstein condensation. Sci. Adv. 8, eabp9757 (2022).

    Article  CAS  Google Scholar 

  165. Zhang, Z. et al. Endoepitaxial growth of monolayer mosaic heterostructures. Nat. Nanotechnol. 17, 493–499 (2022).

    Article  CAS  Google Scholar 

  166. Guo, Y. et al. Designing artificial two-dimensional landscapes via atomic-layer substitution. Proc. Natl Acad. Sci. USA 118, e2106124118 (2021).

    Article  CAS  Google Scholar 

  167. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  Google Scholar 

  168. Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009).

    Article  CAS  Google Scholar 

  169. Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).

    Article  Google Scholar 

  170. Cheng, R. et al. Broadband on-chip single-photon spectrometer. Nat. Commun. 10, 4104 (2019).

    Article  Google Scholar 

  171. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  Google Scholar 

  172. Cao, Y. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 15, 4914–4921 (2015).

    Article  CAS  Google Scholar 

  173. Orchin, G. J. et al. Niobium diselenide superconducting photodetectors. Appl. Phys. Lett. 114, 251103 (2019).

    Article  Google Scholar 

  174. Seifert, P. et al. A high-Tc van der Waals superconductor based photodetector with ultra-high responsivity and nanosecond relaxation time. 2D Mater. 8, 035053 (2021).

    Article  CAS  Google Scholar 

  175. Lee, G.-H. et al. Graphene-based Josephson junction microwave bolometer. Nature 586, 42–46 (2020).

    Article  CAS  Google Scholar 

  176. Walsh, E. D. et al. Josephson junction infrared single-photon detector. Science 372, 409–412 (2021).

    Article  CAS  Google Scholar 

  177. Zhang, S. et al. Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides. Nat. Commun. 13, 542 (2022).

    Article  CAS  Google Scholar 

  178. Avdeev, I. D. & Smirnov, D. S. Hyperfine interaction in atomically thin transition metal dichalcogenides. Nanoscale Adv. 1, 2624–2632 (2019).

    Article  CAS  Google Scholar 

  179. Winter, M. Molybdenum: isotope data. WebElements http://www.webelements.com/molybdenum/isotopes.html (2023).

  180. Fanciulli, M. Electron paramagnetic resonance and relaxation in BN and BN:C. Philos. Mag. B 76, 363–381 (1997).

    Article  CAS  Google Scholar 

  181. Katzir, A., Suss, J. T., Zunger, A. & Halperin, A. Point defects in hexagonal boron nitride. EPR, thermoluminescence, and thermally-stimulated-current measurements. Phys. Rev. B 11, 2370–2377 (1975).

    Article  CAS  Google Scholar 

  182. Murzakhanov, F. F. et al. Electron–nuclear coherent coupling and nuclear spin readout through optically polarized VB spin states in hBN. Nano Lett. 22, 2718–2724 (2022).

    Article  CAS  Google Scholar 

  183. Gao, X. et al. Nuclear spin polarization and control in hexagonal boron nitride. Nat. Mater. 21, 1024–1028 (2022).

    Article  CAS  Google Scholar 

  184. Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).

    Article  CAS  Google Scholar 

  185. Hermans, S. L. N. et al. Qubit teleportation between non-neighbouring nodes in a quantum network. Nature 605, 663–668 (2022).

    Article  CAS  Google Scholar 

  186. Hermans, S. L. N. et al. Entangling remote qubits using the single-photon protocol: an in-depth theoretical and experimental study. New J. Phys. 25, 013011 (2023).

    Article  Google Scholar 

  187. Michaels, C. P. et al. Multidimensional cluster states using a single spin–photon interface coupled strongly to an intrinsic nuclear register. Quantum 5, 565 (2021).

    Article  Google Scholar 

  188. Raussendorf, R., Browne, D. E. & Briegel, H. J. Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003).

    Article  Google Scholar 

  189. Song, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 374, 1140–1144 (2021).

    Article  CAS  Google Scholar 

  190. Li, W. et al. Local sensing of correlated electrons in dual-moiré heterostructures using dipolar excitons. Preprint at https://arxiv.org/abs/2111.09440 (2021).

  191. Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).

    Article  CAS  Google Scholar 

  192. Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020).

    Article  CAS  Google Scholar 

  193. Dirnberger, F. et al. Quasi-1D exciton channels in strain-engineered 2D materials. Sci. Adv. 7, eabj3066 (2021).

    Article  CAS  Google Scholar 

  194. Sahoo, P. K., Memaran, S., Xin, Y., Balicas, L. & Gutiérrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553, 63–67 (2018).

    Article  CAS  Google Scholar 

  195. Voiry, D., Mohite, A. & Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015).

    Article  CAS  Google Scholar 

  196. Stefan, L. et al. Multiangle reconstruction of domain morphology with all-optical diamond magnetometry. Phys. Rev. Appl. 16, 014054 (2021).

    Article  CAS  Google Scholar 

  197. Errando-Herranz, C. et al. Resonance fluorescence from waveguide-coupled, strain-localized, two-dimensional quantum emitters. ACS Photon. 8, 1069–1076 (2021).

    Article  CAS  Google Scholar 

  198. Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article  CAS  Google Scholar 

  199. Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  CAS  Google Scholar 

  200. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  CAS  Google Scholar 

  201. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    Article  CAS  Google Scholar 

  202. Healey, A. J. et al. Quantum microscopy with van der Waals heterostructures. Nat. Phys. 19, 87–91 (2023).

    Article  CAS  Google Scholar 

  203. Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).

    Article  CAS  Google Scholar 

  204. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  205. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).

    Article  CAS  Google Scholar 

  206. Wang, D. et al. Turning a molecule into a coherent two-level quantum system. Nat. Phys. 15, 483–489 (2019).

    Article  CAS  Google Scholar 

  207. Magnard, P. et al. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems. Phys. Rev. Lett. 125, 260502 (2020).

    Article  CAS  Google Scholar 

  208. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article  CAS  Google Scholar 

  209. Hahn, E. L. Spin echoes. Phys. Rev. 80, 580–594 (1950).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Beukers, J. M. Brevoord, A. Das, D. De Fazio, M. del Castillo, N. Demetriou, M. Feuer, R. Flaschmann, D. Gangloff, A. Gio-Pardo, M. Gündogan, S. Hermans, M. Iuliano, J. Jozan-Baldovinos, D. M. Kara, J. Klein, J. Knörzer, S. Loenen, C. Martínez, S. Marzban, A. Mortadelo-Filemón, K. Müller, B. Panh, M. Pasini, M. Petric, B. Pingault, N. Shofer, T. Simmet, L. Stefan, G. van de Stolpe, H. B. van Ommen and A. Kok Cheng Tan for useful discussions. We acknowledge funding from ERC grants Hetero2D, GSYNCOR and GIPT, EPSRC grants EP/K01711X/1, EP/K017144/1, EP/N010345/1, EP/L016087/1, EP/X015742/1, and EP/V000055/1, EU Graphene and Quantum Flagships, EU grants CHARM and Graph-X, the Alexander von Humboldt Foundation, the Australian Research Council (CE200100010, FT220100053) and the Office of Naval Research Global (N62909-22-1-2028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mete Atatüre or Andrea C. Ferrari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Kuan Eng Johnson Goh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–12.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montblanch, A.RP., Barbone, M., Aharonovich, I. et al. Layered materials as a platform for quantum technologies. Nat. Nanotechnol. 18, 555–571 (2023). https://doi.org/10.1038/s41565-023-01354-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01354-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing