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DNA-framework-based multidimensional 
molecular classifiers for cancer diagnosis

Fangfei Yin1,8, Haipei Zhao2,8, Shasha Lu2,3,8, Juwen Shen4,8, Min Li1, 
Xiuhai Mao    1, Fan Li1, Jiye Shi    5, Jiang Li    5,6, Baijun Dong1, Wei Xue1, 
Xiaolei Zuo    1,2 , Xiurong Yang2,7 & Chunhai Fan    1,2

A molecular classification of diseases that accurately reflects clinical 
behaviour lays the foundation of precision medicine. The development of 
in silico classifiers coupled with molecular implementation based on DNA 
reactions marks a key advance in more powerful molecular classification, 
but it nevertheless remains a challenge to process multiple molecular 
datatypes. Here we introduce a DNA-encoded molecular classifier that can 
physically implement the computational classification of multidimensional 
molecular clinical data. To produce unified electrochemical sensing 
signals across heterogeneous molecular binding events, we exploit 
DNA-framework-based programmable atom-like nanoparticles with n 
valence to develop valence-encoded signal reporters that enable linearity 
in translating virtually any biomolecular binding events to signal gains. 
Multidimensional molecular information in computational classification 
is thus precisely assigned weights for bioanalysis. We demonstrate the 
implementation of a molecular classifier based on programmable atom-like 
nanoparticles to perform biomarker panel screening and analyse a panel of 
six biomarkers across three-dimensional datatypes for a near-deterministic 
molecular taxonomy of prostate cancer patients.

Precision medicine calls for the development of a disease-specific 
molecular classification method that accurately reflects clinical behav-
iour1–4. A consistent research trend has been to obtain massive amounts 
of data on multidimensional molecules, including DNA/RNA, proteins 
and small molecules, which triggers growing interest in using multi-
ple molecular datatypes to better classify diseases2,5–12. For example, 
the World Health Organization incorporated molecular indicators 
(for example, cyclin-dependent kinase inhibitor 2A/B homozygous 

deletion and an isocitrate dehydrogenase mutant) for the classifica-
tion of tumours of the central nervous system in the 2021 revision of 
the World Health Organization classification, providing illustrative 
examples of the new paradigm of integrated molecular classifica-
tion13. Nevertheless, the heterogeneity of data obtained from various 
types of technologies accordingly increases and raises grand chal-
lenges in data integration and interpretation14–17. Examples include the  
heterogeneity in measurement sensitivity between RNA sequencing 
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58 nucleotides (58-nt) and one handle DNA-containing DNA fragment 
of 81-nt in stoichiometric equivalents in buffer (Supplementary Fig. 3). 
We heated the mixture to 95 °C and then rapidly cooled it to 4 °C. The 
DTFs were assembled with a high yield of ~95%, characterized by atomic 
force microscopy (AFM; Supplementary Fig. 4) and polyacrylamide gel 
electrophoresis (PAGE; Supplementary Fig. 5). We measured a typical 
edge length of ~12 nm for DTFs (37 base pairs for each edge), which was 
consistent with its theoretical length31. To form the PAN reporter con-
taining more anchoring sites of signal moieties, we coupled one DTF to 
another DTF to form DTF dimer structures through the hybridization 
of a linker DNA and the handle DNA in the two DTFs. The DTF dimer we 
formed had a dumbbell-shaped structure (with ~95% yield), as shown 
by AFM and PAGE imaging (Fig. 2a and Supplementary Figs. 5 and 6).

To validate the valence-encoded PAN reporters, which may encode 
PANs with a defined number of signal moieties, we employed fluoro-
phore labels (for example, cyanine-3 (Cy3)) as signal moieties on PAN 
reporters and characterized the precise number of signal moieties on 
the PAN reporters via the single-molecule technique, total internal 
reflection fluorescence microscopy (TIRFM). PAN reporters contain-
ing a defined number of signal moieties (n = 1, 2 or n) were realized by 
anchoring 1, 2 or n fluorophores on the vertices of a DTF dimer. We 
observed that the fluorescent intensity of the PAN reporters in bulk 
solution was linearly proportional to the number of the signal moie-
ties (R2 > 0.986, R2, R-squared; Fig. 2b). Moreover, aggregation-caused 
quenching cannot occur due to the separation of the fluorophores 
caused by the edge length of ~12 nm of the DTF32 (Supplementary 
Fig. 7). Similarly, the fluorescence intensity of a single PAN reporter 
increased linearly with the increase of the number of Cy3 from one to 
six (R2 > 0.998) in TIRFM measurements (Fig. 2c and Supplementary 
Fig. 8a). Moreover, we observed stepwise single-molecule fluorescence 
photobleaching33, as six steps of photobleaching trace the PAN reporter 
containing six Cy3 labels. One to five steps of photobleaching trace 
the PAN reporters containing one to five Cy3 labels (Fig. 2d and Sup-
plementary Figs. 8b and 9). Thus, the numbers of the signal moieties 
on PAN reporters were precisely controlled from one to six.

We next asked whether PAN reporters possess the orthogonality 
to accommodate programmed multicolour reporters. We anchored 
two types of fluorophores on PAN reporters with different emissions 
but without fluorescence resonance energy transfer (Supplemen-
tary Fig. 10) on the PAN reporters. To this end, six fluorophores were 
anchored on single PAN reporters with various number combinations 
of Alexa Fluor 488 and Cy5. The fluorescence intensity and steps of 
photobleaching of the PAN reporters were linearly proportional to 
the numbers of each type of fluorophore, without interference with 
each other (Fig. 2e and Supplementary Fig. 11). For example, when we 
anchored one Alexa Fluor 488 fluorophore and five Cy5 fluorophores 
on a single PAN reporter, we observed one step of a photobleaching 
trace of Alexa Fluor 488 and five steps of a photobleaching trace of 
Cy5. Thus, the anchoring sites of the PAN reporter were individually 
controlled, with a defined number of signal moieties even in the pres-
ence of multiple distinct signal moieties.

To demonstrate the generality in labelling multiple types of signal 
moieties on the PAN reporter, we anchored various signalling moieties, 
including gold nanoparticles (AuNPs; usually used as a signal moiety for 
mass or colorimetric output)34–36 and enzymes (usually used as a signal 
moiety for fluorescent, colorimetric or electrocatalytic output)37–40. 
We visualized the spatial structure of the PAN reporter anchored with 
AuNPs via transmission electron microscopy (TEM) with a precisely 
controlled number from one to six (Fig. 2f and Supplementary Fig. 12).  
Interestingly, the spatial arrangement of AuNPs coincided with the 
vertices’ arrangement on the DTF dimers, indicating that the signal 
moieties were well anchored on the PAN reporter. We then used horse-
radish peroxidase (HRP) as an example to anchor on the PAN reporter. 
The AFM images showed a precise number of HRPs from one to six on 
the PAN reporter, as shown in Fig. 2g and Supplementary Fig. 13.

and chromatin immunoprecipitation sequencing, which causes signifi-
cant gene expression variations that cannot be mirrored by chromatin 
modifications18. Hence, extensive computing-intensive data filtering 
and systematic normalization are indispensable to enable effective 
multidimensional data integration19,20.

Advances in developing in silico classifiers coupled with 
DNA-reaction-based molecular implementation provides a powerful 
and potentially generalizable means of molecular classification21,22 
(Fig. 1a,b). Seelig and coworkers designed an in silico classifier model 
that could translate parameters and mathematical functions into a 
class of DNA probe reporters to realize multi-gene classification for 
the diagnosis of early cancers and respiratory infections23. Similarly, 
Han and coworkers demonstrated a molecular classifier that could 
analyse different microRNAs (miRNAs) in lung cancer serum samples 
with a diagnosis precision of 86.4% (ref. 24). The binding events between 
a target (DNA/RNA) and multiple single-stranded DNA reporters were 
uniformly translated to an assignment of weights for in silico analysis. 
However, the extension of this method to the dimensions of proteins 
or metabolic small molecules is difficult to implement due to the het-
erogeneous nature of these binding processes. A remaining challenge 
to realize DNA-based multidimensional molecular classifiers is thus 
to develop a signal reporter that can translate the heterogeneous, 
multidimensional molecular information into a unified output signal 
in a programmable manner (Fig. 1a).

The precision and programmable nature of the Watson–Crick 
base pairing of DNA delivers a spectrum of valence-controlled pro-
grammable atom-like nanostructures (PANs) for colloidal assembly 
with different compositions, sizes, chiralities and linearities25,26. In 
particular, self-assembled DNA tetrahedral frameworks (DTFs) pro-
vide a simple means to fabricate three-dimensional PANs with an 
ordered structure and versatile modification27–30. Here we introduce 
a PAN-based molecular classifier that can physically implement the 
computational classification of multidimensional molecular clinical 
data. The atom-like and programmable nature of a DTF supports the 
design of valence-controlled PAN signal reporters, resulting in linearity 
in translating virtually any class of molecular binding to unified elec-
trochemical sensor signals (Supplementary Fig. 1). We demonstrate 
that the use of a PAN reporter allows precise weight assignment for 
multidimensional molecular information in computational classifica-
tion, which is employed to interactively analyse a panel of six biomark-
ers across three-dimensional datatypes (RNA, protein and metabolic 
small molecule) for the classification of prostate cancer (PCa) patients. 
Moreover, we further developed a diagnosis panel screening system 
using PAN reporters for a classification related to the Gleason score.

Construction and characterization of PAN 
reporters
Figure 1c,d shows the general design principle for a DNA-encoded 
molecular classifier, which physically implements an in silico classifier 
for multidimensional molecular data with an electrochemical sensing 
system (Fig. 1e,f and Supplementary Fig. 2). To produce unified elec-
trochemical sensing signals across heterogeneous molecular binding 
events, we designed valence-encoded PAN reporters using DTF-based 
PANs with n valence capable of targeting each target molecule across 
multiple dimensions. More importantly, we envisioned that the use 
of valence-encoded PAN reporters might encode PANs with a defined 
number of signal moieties, allowing for the physical implementation 
of a weight assignment (for example, 1, 2 or n) of the in silico classi-
fier by anchoring 1, 2 or n signal moieties on a PAN reporter. Then, the 
signal gain from each target molecule would be linearly proportional 
to the number of signal moieties on the PAN reporter, which enables 
one to weigh each target molecule according to its importance in the 
in silico classifier.

To fabricate DTF-based PAN reporters, we first assembled a DTF 
containing a handle DNA on a vertex by mixing seven DNA fragments of 
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Molecular implementation of weight assignment
An in silico classifier realizes data classification via the assign-
ment of a numerical weight to each piece of data that represents its 

importance, and then summing the weighted result41. Analogously, 
a multi dimensional molecular classifier translates each mole cular 
input with a weighted sensing signal representing its importance  
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Fig. 1 | A PAN-reporter-based multidimensional molecular classifier for 
cancer diagnosis. a, Schematic illustration of multidimensional molecular 
classifier. The multidimensional molecular information is translated into 
a unified sensing signal. The classifier then handles the sensing signals to 
produce the interpretable yes/no answers. b, Scheme illustrating a conventional 
analysis based on one molecule, a single-dimensional molecular classifier and 
a multidimensional molecular classifier for cancer diagnosis. c, Schematic 

showing how an in silico classifier was trained and validated with publicly 
available data. Each of the multidimensional molecular targets was assigned 
a weight to represent its importance. d, The n-valence PAN enabled the 
construction of a valency-controlled signal reporter for multidimensional 
molecules. e,f, Image (e) and schematic illustration (f) of the multidimensional 
molecular classifier coupled with an electrochemical array with 16 Au electrodes. 
The arrow represents a biological sample being applied.
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by designing a valence-encoded PAN reporter to program the  
unified electrochemical sensing signal for the multidimensional  
molecules.

We developed the weighting system for multidimensional  
molecules with PAN reporters (Fig. 3a). The essential role of the  
system was to facilitate the binding event between the probe and  
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Fig. 2 | The design of valence-encoded signal reporters using PANs. a, In the 
multidimensional molecular classifier, a signal reporter was generated to translate 
each molecule target into a unified output signal and linearly programmed signal 
gain. We employed a DTF-based PAN reporter to implement the information 
translation (left). Wm, Wmi, Wp and Ws were defined as the weight for different 
biomarkers. The structure of the PAN reporter was confirmed with an AFM image 
(right, top). The height–length measurement of the PAN reporter (right, bottom) 
indicates the two DTFs were successfully coupled through the hybridization of 
the linker DNA and handle DNA. Scale bar, 10 nm. The AFM experiments were 
repeated three times, and one representative image is shown. b, Fluorescence 
mapping (left) and intensity (right) of the PAN reporter with different numbers (n) 
of Cy3. The center schematics show the structures. Scale bar, 2 mm. c, Correlation 
between the number and fluorescence intensity of each defined number of Cy3 
dyes (shown in the diagram along the top) on the PAN reporter. The images of 

fluorescence dots were shown on the top. Scale bar, 500 nm. Error bars indicate 
standard deviations (mean ± s.d., n = 20). d, Six steps of photobleaching traces 
(red arrows) were observed when the number of Cy3 dyes was six on a single 
PAN reporter (inset schematic). The images of fluorescence dots modified with 
different number of dyes were shown on the top. Scale bar, 500 nm. e, Correlation 
between the number and fluorescence intensity of each controlled number, with 
two types of fluorophores, Alexa Fluor 488 and Cy5, on the PAN reporter (shown on 
the diagrams in the center). Error bars indicate standard deviations (mean ± s.d., 
n = 20). The images of fluorescence dots modified with different number of dyes 
were shown on the top (Alexa Flour 488) and bottom (Cy5). Scale bars, 500 nm. 
f, TEM images illustrate the precisely controlled number of AuNPs on the PAN 
reporter, connected with white dashed lines and also shown in the schematics 
at the top. Scale bar, 10 nm. g, The formation of the PAN reporter anchored with 
different numbers of HRP and confirmed with AFM. Scale bar, 100 nm.
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Fig. 3 | A PAN reporter-based weighting system for multidimensional molecules. 
a, Scheme of the weighting system for analysing multidimensional molecules 
on a gold electrode. b, Scheme illustration of the recognition and weighting for 
multidimensional molecules. The system facilitated a recognition binding event 
between the probe and target molecule, which triggered a weighted electrochemical 
signal. The top shows mRNA, miRNA or protein, while the bottom shows a small 
molecule. c, Electrochemical signals (shown as current versus time curves) of four 

types of target (miRNA, small molecule, mRNA and protein, illustrated in the insets) 
with precise weight assignment (W). The long axis is an isometric zoom of the short 
axis to show the values more clearly. d, Generality of our weighting system for 
multiple biomarkers. e, Validation of two-dimensional molecular classifier. The PSA 
and MEIS2 gene were used as biomarkers to verify the multidimensional molecular 
classifier. Left: the individual PSA or MEIS2 gene analysis. Right: the classification 
based on the linear classifier model for PSA and MEIS2.
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target molecule to trigger a weighted electrochemical signal. We used 
DTFs to pattern recognition probes on the electrode surface according 
to our previous reports42, leading to a uniform biorecognition layer.  
We employed a sandwich configuration to translate the molecu-
lar binding event into the recruitment of the PAN reporter on the  
electrode for RNAs and proteins. For example, for RNAs (messenger 
RNA (mRNA) or miRNA), a single-stranded DNA probe was used as 
the recognition probe, where base-pairing interactions capture the 
target RNAs on the electrode surface (Supplementary Fig. 14a,b). 
The PAN reporter then specifically recognized the overhang portion  
of the probe–target complex and translated the presence of the  
target RNAs into a weighted electrochemical signal with HRP as the 

signalling molecule (Fig. 3b). For proteins, a specific monoclonal anti-
body was used to capture the target protein on the electrode. Another 
antibody was then used to form an antibody–protein–antibody sand-
wich for the target protein (Fig. 3b and Supplementary Fig. 14c). For 
small molecules, we used an aptamer–DNA duplex as the recognition 
probe. The small-molecule-to-aptamer binding triggered the release 
of DNA on the electrode surface, which recruits the PAN reporter via 
a hybridization between the released DNA and the DNA linker on the  
PAN reporter (Fig. 3b and Supplementary Fig. 14d). Thus, we designed 
the weighting system for all the major dimensions of biologically  
relevant molecules, indicating the generality of our PAN reporter  
for the weight assignment in multidimensional molecules (Fig. 3a,b).
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We experimentally implemented this weighting system by design-
ing a weight assignment with one to six HRPs using a PAN reporter for 
multidimensional molecules (for example, miRNA, mRNA, proteins 
and small molecules). The electrochemical signal corresponding to 
the weight assignments was recorded after the addition of the targets 
until a steady electrochemical signal was achieved. We observed that 
the signals were linearly proportional to the weights that were realized 
through controlling the number of HRP on the PAN reporter (R2 > 0.997) 
for an RNA of 78-nt, a miRNA of 22-nt, an antigen of ~30,000 daltons 
and a small molecule with 13 atoms. Thus, this system was suitable  
for assigning an integer-valued weight to different targets (Fig. 3c).

To further demonstrate the generality of the design, we applied  
the weighting system to 12 additional biomarkers, including COVID-19 
biomarkers (including Open Read Framework 1ab (ORF 1ab), enve-
lope gene (E gene) and nucleus gene (N gene))43; cancer biomarkers 
(mRNA ROR2, mRNA MEIS2 and circulating tumor DNA ALU115)44; and 
disease-related miRNAs (miR-21, miR-26a, miR-375, miR-144, miR-153 
and miR-183)45. We achieved a signal gain of 3.35 μA for ORF 1ab at a 
concentration of 1,000 copies μl−1 (~1.66 fM), indicating successful 
signal translation (Fig. 3d). Analogously, we observed remarkable  
signal gains of 3.75 μA for ALU115 with a concentration of 1 fM.

We further explored the implementation of the weighting system 
in complicated and biologically relevant matrices, including four types 
of different diluent of human body fluids (sweat, serum, urine and 
saliva) and five types of mouse tissue homogenates (heart, kidney, 
lung, stomach and liver). We observed efficient signal translation 
and achieved a remarkable signal gain for target molecules, so our 
weighting system was suitable for complicated biological samples 
(Supplementary Figs. 15 and 16).

Validation of the two-dimensional molecular 
classifier
To experimentally validate a two-dimensional molecular classifier, we 
employed prostate-specific antigen (PSA), a biomarker in PCa diag-
nosis, and MEIS2, an mRNA biomarker related to PCa, as the target 
biomarkers (Fig. 3e)46. We assigned a positive weight of +3 to PSA and 
a negative weight of –3 or –1 to MEIS2. A positive weight represents  
the positive correlation and a negative weight represents the negative 
correlation to disease, while their values indicate their importance. We 
prepared 64 mimetic samples through mixing these two biomarkers 
with different concentration combinations (Supplementary Table 1)  
and measured these biomarkers using our PAN reporter (Fig. 3e, left).  
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legend of ROC curve. In e, AUC is defined as the area under the ROC curve. The 
red dashed line is the boundary for calculating the area, which is common to both 
ROC curves (including blue and orange).
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After analysing the data via a mathematical function (Result= 3CPSA –  
3CMEIS2; C, concentration), we found that the 64 samples were classified 
into two groups, in agreement with our classifier design (Fig. 3e, right). 
Moreover, when we changed the weight of MEIS2 from −3 to −1 via a 
mathematical function (Result= 3CPSA – 1CMEIS2), those samples were  
also classified into two groups but with a different thresholding bound-
ary compared with Result= 3CPSA – 3CMEIS2 (Supplementary Fig. 17).

In silico training for PCa diagnosis
Next, we attempted to scale up our molecular classifier and employ 
multidimensional data to classify PCa patients. The workflow is illus-
trated in Supplementary Fig. 18. To obtain an in silico classifier model 
for PCa patients’ classification, we used publicly available gene and 
miRNA profiling data from Gene Expression Omnibus, as well as  
PSA and sarcosine measurement data from previous works47, for  
classifier training (Fig. 4a). We analysed the distributions of the multi-
dimensional molecules between the healthy individuals and PCa 
patients, and the selected molecules were distinguishable between 

these two groups (Supplementary Figs. 19–22). We further investigated 
the classification models with our classifier, and the robust validation 
capabilities were confirmed (Supplementary Figs. 23–25).

We integrated the three datasets into a large dataset to evalu-
ate the application for multidimensional molecules and searched 
the weight combinations by using several logistic regression models  
with different optimized emphases (Supplementary Fig. 26). We  
then selected the precision-optimized model to avoid overtreat-
ment (Fig. 4b,c). The optimal weights obtained included miR-153 
(weight = –1), miR-183 (weight = +4), ROR2 (weight = –2), MEIS2 
(weight = –3), PSA (weight = +3) and sarcosine (SO; weight = +1). With 
this set of weights, we achieved a recognition sensitivity of 80%, speci-
ficity of 100%, F1-score of 97%, receiver operating characteristic (ROC) 
curve of 97%, precision of 100% and accuracy of 95% for the validation 
set (Fig. 4c and Supplementary Fig. 26c; the parameters are presented 
in Supplementary Table 2). Further, we compared the training and  
validation sets using standard deviation analysis of the multidimen-
sional targets for PCa diagnosis (Fig. 4d,e). The classifier showed 
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Fig. 6 | Diagnosis panel screening using PAN reporters for PCa. a, Schematic 
illustration of diagnosis panel screening using PAN reporters. We tested different 
biomarkers (miR-32, miR-96, miR-153 and miR-183, labelled A–D) in a series of 
clinical samples with different scores. Several weights (1, 2, 3 and 4) were assigned 
to the different markers for information transducing, and all combinations of 
weights were traversed to finally obtain the optimal diagnostic panel. b, The 

heatmap of the total traversal analysis for 2,048 ( = 84/2). c, The heatmap of the 
top five correlation analysis. d, The clustering analysis with the optimal weight 
combination (miR-32 with weight of +3, miR-96 with weight of –1, miR-153 with 
weight of +1 and miR-183 with weight of –2). The red dashed line represents the 
average of the group with different Gleason scores. Significant clustering related 
to the Gleason score was observed.
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excellent specificity and sensitivity, and it was feasible to achieve 
molecular implementation.

PCa diagnosis using multidimensional molecular 
classifier
We first validated the signal-translating performance of the PAN 
reporter for six biomarkers of PCa. The electrochemical signal of miRNA 
exhibited a concentration-dependent linear response with a dynamic 
range of four orders of magnitude. The detection limit for miRNAs 
was estimated as 100 fM, allowing for the direct analysis of miRNAs 
for real samples48 (Supplementary Fig. 27). Similarly, we achieved 
the sensitive detection of mRNA, PSA and SO with dynamic ranges of 
three to five orders of magnitude. The detection limits were down to  
1 pM for mRNA, 0.05 ng ml–1 for PSA and 10 nM for SO (Supplementary 
Figs. 28–30). The electrochemical signals were also positively corre-
lated to the weights for each biomarker, in agreement with the trends 
in Fig. 3c. Thus, we successfully established the weight assignment 
for the six biomarkers (miR-153, miR-183, ROR2, MEIS2, PSA and SO; 
Supplementary Figs. 31–34).

We then implemented the molecular classifier for the classification 
of real clinical samples from 32 PCa patients and 50 healthy individuals 
(the sample information is summarized in Supplementary Table 3).  
The workflow for clinical sample classification is presented in  
Supplementary Fig. 35. As shown in Fig. 5a,b, we successfully employed 
the PAN reporter to convert the six biomarkers into weighted electro-
chemical signals using the optimized weight sets (Fig. 5c). We realized 
an accurate classification between PCa patients and healthy individuals  
with our molecular classifier (P value < 0.01; Fig. 5d). The ROC curve 
indicated a high predictive power with an area under the curve (AUC) 
of 100% using our molecular classifier (Fig. 5d). We obtained a speci-
ficity of 100% and sensitivity of 100%, with the optimal cut-off value.  
By contrast, we obtained an AUC of only 54% with a single miRNA  
(miR-183) and an AUC of 84% with a single mRNA (ROR2; Fig. 5e and 
Supplementary Fig. 36).

Biomarker panel screening using molecular 
classifier
Biomarker panels have the potential to distinguish between patients in 
various disease processes49 (for example, patients with various Gleason 
scores for PCa). The rational design of biomarker panels with optimal 
weighting more accurately reflects the multiple disease processes 
of cancer. However, the screening of the optimal weighting of each 
biomarker is challenging. We used serum samples from 12 patients to 
screen the optimal weighting of the biomarker panel. Samples included 
four samples with a Gleason score of 6, four samples with a Gleason 
score of 7 and four samples with a Gleason score of 8 or 9. We used a 
panel of miRNAs (miR-32, miR-96, miR-153, miR-183) as a model sys-
tem and assigned weights 1, 2, 3 and 4 to each miRNA using our PAN 
reporter’s weighting system. The weighted signals from the miRNAs 
with different weight combinations were obtained as 2,048 combi-
nations. The results were used for clustering analysis to screen the  
optimal weighting set of the biomarker panel (Fig. 6a,b). As shown 
in Fig. 6c, top five correlation analysis allowed for the classification 
of three groups according to the Gleason scores, with the optimal 
weighted result given as Result = 3CmiR-32 – CmiR-96 + CmiR-153 – 2CmiR-183, as 
shown in Fig. 6d, indicating the ability of our molecular classifier to 
perform the biomarker panel screening.

Conclusions
In summary, we developed valence-encoded PAN signal reporters by 
exploiting DNA frameworks to realize multidimensional molecular 
classification, which resulted in precise PCa diagnosis (an AUC of 100%) 
with six biomarkers across three-dimensional datatypes (Supplemen-
tary Information). Given the ever-increasing amount of molecular 
information from the gene, RNA, protein and metabolomic profiling 

of diseases, our multidimensional molecular classifiers for analysing  
multidimensional molecular biomarkers sheds light on precision  
diagnosis and therapy.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41565-023-01348-9.
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Methods
The study was approved by the Ethics Committee at Renji Hospital, 
School of Medicine, Shanghai Jiao Tong University. All methods were 
performed in accordance with these approved guidelines.

Workflow
The workflow for the classification of real clinical samples is presented 
in Supplementary Fig. 35. Recognition probes for each target were first 
modified on the electrode. The read-out of the electrochemical signal 
of the multidimensional target was performed by weighting the capture 
of the recognition probe with the PAN reporter. The final classification 
of clinical samples was achieved by a diagnostic function. The cost for 
a patient is only US$6.3 (Supplementary Table 4)

Data availability and simulations
The miRNA data. The miRNA data for PCa patient analysis was from 
GPL8227 (Agilent-019118 Human miRNA Microarray 2.0 G4470B; 
miRNA ID version). This dataset included 113 prostate patients and 
28 healthy individuals. For every single person, there were 881 miRNA 
described, such as miR-183. According to the t-test result, 171 miRNA 
described were selected with a high significant difference between 
patients and healthy ones. Tree-based feature selection from sklearn 
(the function library of tree-based feature) was used to select the top 
related miRNAs (miR-183 and miR-153).

The mRNA data. The mRNA data for the PCa patient analysis was from 
GPL10264 (Human Exon 1.0 ST Array; CDF file, HuEx_1_0_st_v2_main_
A20071112_EP.cdf) and recorded the Affymetrix gene expression of 
150 PCa patients and 29 healthy individuals. The descriptors were 
dimensionality-reduced from 43,419 to 6,148 by a t-test, and remained 
two items (NM_170675 (MEIS2) and NM_004560 (ROR2)) by tree-based 
feature selection.

Clinical dataset. The clinical dataset was from the literature47. It con-
tained 70 PCa patients and 32 healthy individuals. The most important 
features were the PSA and SO after being treated similarly, as men-
tioned earlier.

From gene expression data (GPL10264), we obtained 150 PCa 
patients and 29 healthy individuals and employed a tree-based fea-
ture selection method to screen for the two most related aberrant 
expressed genes. We selected ROR2 and MEIS2 from 43,419 items 
(dataset 1). Similarly, we analysed the miRNA profiling (GPL8227) with 
113 PCa patients and 28 healthy individuals, and selected two important  
miRNAs (miR-153 and miR-183) by feature selection (dataset 2). In 
addition, PSA and SO were selected as protein and small molecule 
biomarkers, respectively, from the clinical data (70 PCa patients and 
32 healthy individuals; dataset 3).

The missing data were replaced by the average of each descriptor 
among the same group. In all, the combined dataset had 422 samples; 
among these were 333 PCa patients and 89 healthy individuals. Each 
individual was described by six selected descriptors.

Software. Tree-based feature selection from sklearn was used for 
feature selection, and the logistic regression module from sklearn was 
applied to classify the two-category model. To find the integer weights 
of each descriptor, an exhaustive search method hunted through the 
whole integer parameter space from –4 to 4. The accuracy, precision, 
recall and F1-score of every model were calculated and recorded. The 
classification analysis was implemented by the Classification learning 
app in MATLAB (R2020b).

Benchmarking. The concentration and weight correlation of the 
molecular classifier were calibrated with the standard samples for 
different targets before diagnosis applications. The concentration 
of the standard was quantified by the UV absorbance at 260 nm by 

the Shanghai Institute of Measurement and Testing Technology. (The 
certificate of the standard samples is provided in Supplementary 
Information and Supplementary Table 5.)

Synthesis and purification of DTF-based PAN reporter. All DNA 
strands were mixed in TM buffer to synthesize the DTF structures (the 
proportions are illustrated in Supplementary Tables 6–19). The mixture 
was heated to 95 °C for 15 min, and cooled to 4 °C for at least 20 min 
by using a PTC-200 thermal cycler DNA engine (MJ Research, USA). 
We purified the synthesized DTF structures according to the method 
reported in the literature50. Our PAN reporter is simple to prepare 
and can be successfully synthesized even by undergraduate students 
without any knowledge in this field (Supplementary Fig. 37 and Sup-
plementary Table 20). Moreover, we were able to achieve millilitre-level 
(7.5 ml) synthesis using a metal blocker for the bulk preparation of 
PAN (Supplementary Fig. 38). The PAN was tested and characterized 
through PAGE after being stored in buffer solution or serum for 1, 3, 7 
and 15 days. As shown in Supplementary Fig. 39, PAN remained stable 
in the buffer solution even after 15 days and stable in the serum for at 
least a day. Thus, PAN reporters can be prepared in bulk and preserved 
for long periods, with potential for practical clinical applications (Sup-
plementary Table 21). The stability of the DTF at the interface was also 
examined, to adapt it to interfacial applications. After being modified 
with both Cy3 and Cy5 on the same edge of the DTF, we found that the 
DTF can be stable at the interface for up to five days, as determined 
with fluorescence resonance energy transfer and dual fluorescence 
co-localization (Supplementary Fig. 40).

Weighting system for miRNA information translation. The purified 
DTF for short-strand RNA interface capture (1 μM, 6 μl) was incubated 
on the cleaned electrode overnight at room temperature. The elec-
trodes were then passivated by methylcyclohexane (2 mM), polyeth-
ylene glycol 2000 (2 mM) and 10% bovine serum albumin. After that, 
the electrodes were washed with phosphate-buffered saline (PBS) and 
dried with nitrogen. Next, the samples were dropped on the electrode 
surface and incubated for 2 h at 25 °C. The PAN reporter (50 nM) was 
added on the electrode surface and incubated for 2 h at 25 °C. Finally, 
4 μl of avidin-HRP was added on the electrode surface for 15 min to bind 
to the biotin in the molecular reporter. After being washed thoroughly, 
the electrodes were immersed in TMB solution buffer for electrochemi-
cal measurements.

Weighting system for mRNA information translation. The puri-
fied DTF dimer for long-strand RNA interface capture (1 μM, 6 μl) was 
incubated on the cleaned electrode overnight at room temperature. 
The processes of sealing and content information transformation for 
mRNA were the same as those of miRNA.

Weighting system for PSA information translation. The purified DTF 
for PSA interface capture (1 μM, 6 μl) was incubated on the cleaned 
electrode overnight at room temperature. After being washing twice 
with PBST buffer and once with PBS buffer, anti-PSA monoclonal anti-
body (coating; monoclonal antibody is a highly uniform antibody and 
only specific to a specific epitope) (L1; 100 μM, 6 μl) was dropped on 
the chip electrode and incubated at room temperature for 2 h to form 
the fixed probe, and then the electrode was washed twice with PBST 
buffer and once with PBS buffer. Subsequently, a series of PSA samples 
in PBS buffer (6 μl) at variable concentrations were dropped on the 
chip electrodes and incubated at 37 °C for 1 h. After washing, anti-PSA 
monoclonal antibody (labelling) (L2; 100 μM, 6 μl) was dropped on the 
chip electrode and incubated at room temperature for 2 h to form the 
capture probe. The chip electrode was washed twice with PBST buffer 
and once with PBS buffer. After that, the PAN reporter (100 μM, 6 μl) 
was dropped on the chip electrode and incubated at room temperature 
for 2 h to form the weighting probe. Finally, excess avidin-HRP was 
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dropped onto the electrode and incubated at room temperature for 
15 min. After washing twice with PBST buffer and once with PBS buffer, 
electrochemical testing was performed immediately. The sequences 
of L1 and L2 were shown in Supplementary Tables.

Weighting system for SO information translation. The purified DTF 
for SO interface capture (1 μM, 6 μl) was incubated on the cleaned 
electrode overnight at room temperature. The electrodes were pas-
sivated with 0.13% methylcyclohexane, 20 mg ml–1 polyethylene glycol 
and 1% casein in sequence for 1 h. The diluted sample solution was 
incubated on the 16-channel electrodes for 2 h at room temperature 
(6 μl). After 2 h, the 16-channel electrodes were washed with the wash-
ing buffer. The PAN reporter was incubated on the electrodes for 2 h and 
then washed with PBS buffer. Finally, excess avidin-HRP was dropped  
onto the electrode and incubated at room temperature for 15 min.  
After washing twice with PBST buffer and once with PBS buffer, electro-
chemical testing was performed immediately.

Electrochemical measurements. All electrochemical measure-
ments were done on a Model 1040C (CH Instruments). The working 
gold 16-channel electrode, the auxiliary electrode and the reference  
electrode, integrated in the chip, were used. Cyclic voltammetry  
was carried out at a scan rate of 100 mV s–1. The current was recorded 
at –100 mV after the steady state of the HRP catalytic reaction  
was reached30.

Biomarker panel screening using molecular classifier. In the experi-
ments of the biomarker panel screening, we used the fluorescent signal 
chip system. The 500 nM miRNA capture probes (Supplementary 
Tables 16 and 17) were printed by microarray robot (Nano-Plotter 
NP2.1). After incubating overnight, the chip was then blocked by 2 mM 
polyethylene glycol 2000 for 45 min and 2% bovine serum albumin 
for 1 h. The diluent for clinical samples was added on the chip and 
incubated for 2 h at 25 °C. The PAN reporter with different weights 
(50 nM) was then added on the chip and incubated for 2 h at 25 °C. 
Then the chip was imaged by a GenePix 4100A microarray scanner. We 
obtained signals of four targets with four weights for 12 patients. By 
adding and subtracting combinations of them, 2,048 (84/2) diagnostic 
formulas were obtained. Finally, the optimal formulas were filtered by 
cluster analysis.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data that support the plots within this paper and other findings of 
this study are available from the corresponding author upon reason-
able request. Furthermore, the miRNA, mRNA, PSA and SO data used in 

this study are available in ref. 47 and the National Center for Biotechnol-
ogy Information database, https://www.ncbi.nlm.nih.gov/genome.
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Recruitment All subjects were enrolled with Institutional Review Board-approved protocols and all serum samples were collected with 
informed consent. PCa patients were recruited based on clinical diagnosis of PCa with confirmed pathological biopsy results. 
Healthy individuals were recruited based on their health screening reports with no issue of the prostate. The serum samples 
were collected by the Renji Hospital, School of Medicine, Shanghai Jiao Tong University.

Ethics oversight All samples analyzed in this study were collected with informed consent from subjects and approved protocols that complied 
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Sample size No sample size calculation during experiment design. For in silico training, sample size was determined by the number of cases available in the 
NCBI database and mined. For the evaluation of diagnostic accuracy of the multidimensional molecular classifier, we used 82 clinical serum 
samples from 50 healthy and 32 PCa individuals. Herein, the sample size was largely determined by sample availability.

Data exclusions None clinical sample was excluded.

Replication We replicated PAGE, AFM and TIRFM characterization at least 3 times and electrochemical measurements at least 2 times across different 
conditions. Any case was not found where the data was not able to be replicated.

Randomization PCa patients and healthy controls were enrolled in the study based on either confirmed diagnosis of prostate cancer or health screening 
reports with no issue of the prostate. Therefore, randomization of individuals in different groups is not applicable

Blinding No blinded experiments. For In silico training, we obtained all the available  data from NCBI database and ref.47 . For the clinical samples, we 
collected known types of samples from Renji hospital according to the experimental needs to verify the accuracy of multidimensional 
molecular classifier.
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Antibodies used Anti-PSA McAb (coating) (Shanghai Linc-Bio Science Co. LTD, catalog: L1C00401, clone numbers:PS001 ); Anti-PSA McAb (labeling) 

(Shanghai Linc-Bio Science Co. LTD, catalog: L1C00402, clone numbers:PS002)

Validation Anti-PSA McAb (coating)  Reactivity: Mouse; Hybridization of P3-X63-Ag8.653 .myeloma cells with spleen cells from Balb/c mice. 
Application: PSA capture. Anti-PSA McAb (labeling) Reactivity: Mouse; Hybridization of P3-X63-Ag8.653 .myeloma cells with spleen 
cells from Balb/c mice. Application: PSA detection.

Animals and other research organisms
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Laboratory animals BALA/C-nu mice (3-4 weeks age, from Jiesijie Laboratory Animal Center) was used in the study. The mice were housed five per cage in 
a specific pathogen-free environment  (18–22 °C, 50–70% relative humidity, 12 h light–dark cycle) and access to water and food 
freely.

Wild animals No wild animals were used in the study.

Reporting on sex The animal was used only to provide tissue homogenates. Sex had no effect on the experiment

Field-collected samples No field collected samples were used in the study.

Ethics oversight All the experiments were complied with international guidelines and animal experiments were performed under the guidelines 
evaluated and approved by the ethics committee of the Institutional Animal Care and Use Committee of Shanghai Jiao Tong 
University.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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