Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process


Layer transfer techniques have been extensively explored for semiconductor device fabrication as a path to reduce costs and to form heterogeneously integrated devices. These techniques entail isolating epitaxial layers from an expensive donor wafer to form freestanding membranes. However, current layer transfer processes are still low-throughput and too expensive to be commercially suitable. Here we report a high-throughput layer transfer technique that can produce multiple compound semiconductor membranes from a single wafer. We directly grow two-dimensional (2D) materials on III–N and III–V substrates using epitaxy tools, which enables a scheme comprised of multiple alternating layers of 2D materials and epilayers that can be formed by a single growth run. Each epilayer in the multistack structure is then harvested by layer-by-layer mechanical exfoliation, producing multiple freestanding membranes from a single wafer without involving time-consuming processes such as sacrificial layer etching or wafer polishing. Moreover, atomic-precision exfoliation at the 2D interface allows for the recycling of the wafers for subsequent membrane production, with the potential for greatly reducing the manufacturing cost.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Direct growth of 2D materials for 2DLT.
Fig. 2: Remote epitaxy on directly grown 2D materials.
Fig. 3: Multiple membrane production by reusing a wafer.
Fig. 4: Multistack growth and layer-by-layer exfoliation.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. Bae, S. H. et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550–560 (2019).

    Article  CAS  Google Scholar 

  2. Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).

    Article  CAS  Google Scholar 

  3. Cheng, C. W. et al. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nat. Commun. 4, 1–7 (2013).

    Article  Google Scholar 

  4. Wu, F. L., Ou, S. L., Horng, R. H. & Kao, Y. C. Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications. Sol. Energy Mater. Sol. Cells 122, 233–240 (2014).

    Article  CAS  Google Scholar 

  5. Wong, W. S., Sands, T. & Cheung, N. W. Damage-free separation of GaN thin films from sapphire substrates. Appl. Phys. Lett. 72, 599 (1998).

    Article  CAS  Google Scholar 

  6. Raj, V. et al. Layer transfer by controlled spalling. J. Phys. D 46, 152002 (2013).

    Article  Google Scholar 

  7. Bedell, S. W., Lauro, P., Ott, J. A., Fogel, K. & Sadana, D. K. Layer transfer of bulk gallium nitride by controlled spalling. J. Appl. Phys. 122, 025103 (2017).

    Article  Google Scholar 

  8. Kobayashi, Y., Kumakura, K., Akasaka, T. & Makimoto, T. Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 484, 223–227 (2012).

    Article  CAS  Google Scholar 

  9. Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

    Article  CAS  Google Scholar 

  10. Kim, H. et al. Graphene nanopattern as a universal epitaxy platform for single-crystal membrane production and defect reduction. Nat. Nanotechnol. 17, 1054–1059 (2022).

    Article  CAS  Google Scholar 

  11. Kum, H. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2, 439–450 (2019).

    Article  CAS  Google Scholar 

  12. Kong, W. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater. 17, 999–1004 (2018).

    Article  CAS  Google Scholar 

  13. Bae, S. H. et al. Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy. Nat. Nanotechnol. 15, 272–276 (2020).

    Article  CAS  Google Scholar 

  14. Kim, H. et al. Remote epitaxy. Nat. Rev. Methods Prim. 2:40, 1–21 (2022).

    Google Scholar 

  15. Park, J.-H. et al. Influence of temperature-dependent substrate decomposition on graphene for separable GaN growth. Adv. Mater. Interfaces 6, 1900821 (2019).

    Article  CAS  Google Scholar 

  16. Koukitu, A., Mayumi, M. & Kumagai, Y. Surface polarity dependence of decomposition and growth of GaN studied using in situ gravimetric monitoring. J. Cryst. Growth 246, 230–236 (2002).

    Article  CAS  Google Scholar 

  17. Li, P., Xiong, T., Wang, L., Sun, S. & Chen, C. Facile Au-assisted epitaxy of nearly strain-free GaN films on sapphire substrates. RSC Adv. 10, 2096–2103 (2020).

    Article  CAS  Google Scholar 

  18. Kim, G. et al. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano Lett. 13, 1834–1839 (2013).

    Article  CAS  Google Scholar 

  19. Jang, A. R. et al. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett. 16, 3360–3366 (2016).

    Article  CAS  Google Scholar 

  20. Bepete, G., Voiry, D., Chhowalla, M., Chiguvare, Z. & Coville, N. J. Incorporation of small BN domains in graphene during CVD using methane, boric acid and nitrogen gas. Nanoscale 5, 6552–6557 (2013).

    Article  CAS  Google Scholar 

  21. Zhang, B. et al. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. ACS Nano 6, 2471–2476 (2012).

    Article  CAS  Google Scholar 

  22. Toh, C. T. et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 577, 199–203 (2020).

    Article  CAS  Google Scholar 

  23. Joo, W. J. et al. Realization of continuous Zachariasen carbon monolayer. Sci. Adv. 3, e1601821 (2017).

    Article  Google Scholar 

  24. Zhang, Y. T. et al. Structure of amorphous two-dimensional materials: elemental monolayer amorphous carbon versus binary monolayer amorphous boron nitride. Nano Lett. 22, 8018–8024 (2022).

    Article  CAS  Google Scholar 

  25. Jung, D. et al. Low threading dislocation density GaAs growth on on-axis GaP/Si (001). J. Appl. Phys. 122, 225703 (2017).

    Article  Google Scholar 

  26. Shang, C. et al. A pathway to thin GaAs virtual substrate on on-axis Si (001) with ultralow threading dislocation density. Physica Status Solidi A 218, 2000402 (2021).

    Article  CAS  Google Scholar 

  27. Hool, R. D. et al. Challenges of relaxed n-type GaP on Si and strategies to enable low threading dislocation density. J. Appl. Phys. 130, 243104 (2021).

    Article  CAS  Google Scholar 

  28. Liu, A. Y. et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl. Phys. Lett. 104, 041104 (2014).

    Article  Google Scholar 

  29. Chen, S. et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics 10, 307–311 (2016).

    Article  Google Scholar 

  30. Liang, D., Wei, T., Wang, J. & Li, J. Quasi van der Waals epitaxy nitride materials and devices on two dimension materials. Nano Energy 69, 104463 (2020).

    Article  CAS  Google Scholar 

  31. Kim, H. et al. Role of transferred graphene on atomic interaction of GaAs for remote epitaxy. J. Appl. Phys. 130, 174901 (2021).

    Article  CAS  Google Scholar 

  32. Kim, H. et al. Impact of 2D–3D heterointerface on remote epitaxial interaction through graphene. ACS Nano 15, 10587–10596 (2021).

    Article  CAS  Google Scholar 

  33. Yoon, J. et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010).

    Article  CAS  Google Scholar 

  34. Hong, S. et al. Ultralow-dielectric-constant amorphous boron nitride. Nature 582, 511–514 (2020).

    Article  CAS  Google Scholar 

  35. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  36. Zhang, Y., Huang, L. & Shi, Y. Silica glass toughened by consolidation of glassy nanoparticles. Nano Lett. 19, 5222–5228 (2019).

    Article  CAS  Google Scholar 

  37. Ethier, S. & Lewis, L. J. Epitaxial growth of Si1−xGex on Si(100)2 × 1: a molecular-dynamics study. J. Mater. Res. 7, 2817–2827 (1992).

    Article  CAS  Google Scholar 

  38. Bourque, A. J. & Rutledge, G. C. Empirical potential for molecular simulation of graphene nanoplatelets. J. Chem. Phys. 148, 144709 (2018).

    Article  Google Scholar 

  39. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  40. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  41. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  42. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

Download references


We acknowledge the support from the Defense Advanced Research Projects Agency Young Faculty Award (award number 029584-00001), the Air Force Research Laboratory (award numbers FA9453-18-2-0017 and FA9453-21-C-0717), the US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office (award number DE-EE0008558), and Universiti Tenaga Nasional and UNTEN R&D Sdn. Bhd., Malaysia through TNB Seed fund grant number U-TV-RD-20-10. We also acknowledge the support, in part, from Umicore, LG electronics and Rohm Semiconductor. D.S., H.-K.C. and S.H. acknowledge support from the Global Research and Development Center Program (2018K1A4A3A01064272) and the Basic Science Research Program (2021R1A4A1031900) through the NRF funded by the Korean government (MSIT).

Author information

Authors and Affiliations



Jeehwan Kim conceived the idea and led the research. H.K., Y.L., K. Lu, C.S.C., K.Q. and W.K. designed the experiments. Y.L., K.Q., B.-I.P., Jekyung Kim and J.J. conducted III–N and BN growth. H.K., K. Lu and N.M.H. conducted III–V growth. H.K., K. Lu., N.M.H., K.S.K., S.L., C.K., H.W., L.K. and J. Kong developed TAC growth. D.S., H.-K.C. and S.H. conducted DFT calculations. M.A., Y.Z. and Y.S. conducted MD simulations. C.S.C., M.Z., K.S.K., S. Kang, J.P., S. Kim and J.H. conducted (S)TEM measurements. H.K., Y.L., K. Lu, C.S.C., C.C., X.Z. and S.-H.B. conducted 2DLT and 2D materials transfer. H.K., Y.L., K. Lu, K.Q., K.S.K., J.M.S., Y.B., Y.J.J., N.N.A., M.N.M.A., K. Lee and G.Y.Y. conducted characterization of thin films, BN and TAC. The manuscript was written by H.K. and Jeehwan Kim with input from all authors. All authors contributed to the analysis and discussion of the results leading to the manuscript.

Corresponding authors

Correspondence to Yunfeng Shi, Suklyun Hong, Wei Kong or Jeehwan Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Didier Landru, Rongming Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes 1–4 and figs. 1–12.

MD simulation of layer exfoliation from a multistack structure.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Liu, Y., Lu, K. et al. High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process. Nat. Nanotechnol. 18, 464–470 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research