Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-photon detection using high-temperature superconductors

Abstract

The detection of individual quanta of light is important for quantum communication, fluorescence lifetime imaging, remote sensing and more. Due to their high detection efficiency, exceptional signal-to-noise ratio and fast recovery times, superconducting-nanowire single-photon detectors (SNSPDs) have become a critical component in these applications. However, the operation of conventional SNSPDs requires costly cryocoolers. Here we report the fabrication of two types of high-temperature superconducting nanowires. We observe linear scaling of the photon count rate on the radiation power at the telecommunications wavelength of 1.5 μm and thereby reveal single-photon operation. SNSPDs made from thin flakes of Bi2Sr2CaCu2O8+δ exhibit a single-photon response up to 25 K, and for SNSPDs from La1.55Sr0.45CuO4/La2CuO4 bilayer films, this response is observed up to 8 K. While the underlying detection mechanism is not fully understood yet, our work expands the family of materials for SNSPD technology beyond the liquid helium temperature limit and suggests that even higher operation temperatures may be reached using other high-temperature superconductors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High-Tc superconducting nanowires.
Fig. 2: Transport properties of cuprate SNWs.
Fig. 3: Photovoltage generation in cuprate SNW detectors.
Fig. 4: Single-photon detection by cuprate SNWs.

Similar content being viewed by others

Data availability

The data reported in Figs. 24 can be found on Zenodo (https://doi.org/10.5281/zenodo.7501827). The other data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  CAS  Google Scholar 

  2. Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).

    Article  Google Scholar 

  3. Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    Article  CAS  Google Scholar 

  4. Tillmann, M. et al. Experimental boson sampling. Nat. Photonics 7, 540–544 (2013).

    Article  CAS  Google Scholar 

  5. Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    Article  CAS  Google Scholar 

  6. Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photonics 11, 361–365 (2017).

    Article  CAS  Google Scholar 

  7. Paterova, A. V., Yang, H., An, C., Kalashnikov, D. A. & Krivitsky, L. A. Tunable optical coherence tomography in the infrared range using visible photons. Quantum Sci. Technol. 3, 025008 (2018).

    Article  Google Scholar 

  8. Bhargav, A. M., Rakshit, R. K., Das, S. & Singh, M. Metrology perspective of single-photon detectors: review on global calibration methods. Adv. Quantum Technol. 4, 2100008 (2021).

    Article  Google Scholar 

  9. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011).

    Article  CAS  Google Scholar 

  10. Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photonics 3, 696–705 (2009).

    Article  CAS  Google Scholar 

  11. Valivarthi, R. et al. Quantum teleportation across a metropolitan fibre network. Nat. Photonics 10, 676–680 (2016).

    Article  CAS  Google Scholar 

  12. Liao, S.-K. et al. Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120, 030501 (2018).

    Article  CAS  Google Scholar 

  13. Gisin, N. & Thew, R. Quantum communication. Nat. Photonics 1, 165–171 (2007).

    Article  CAS  Google Scholar 

  14. Zhao, Q.-Y. et al. Single-photon imager based on a superconducting nanowire delay line. Nat. Photonics 11, 247–251 (2017).

    Article  CAS  Google Scholar 

  15. Xia, F. et al. Short-wave infrared confocal fluorescence imaging of deep mouse brain with a superconducting nanowire single-photon detector. ACS Photonics 8, 2800–2810 (2021).

    Article  CAS  Google Scholar 

  16. Ozana, N. et al. Superconducting nanowire single-photon sensing of cerebral blood flow. Neurophotonics 8, 035006 (2021).

    Article  CAS  Google Scholar 

  17. Li, L. & Davis, L. M. Single photon avalanche diode for single molecule detection. Rev. Sci. Instrum. 64, 1524–1529 (1993).

    Article  CAS  Google Scholar 

  18. Bao, Z. et al. Laser ranging at few-photon level by photon-number-resolving detection. Appl. Opt. 53, 3908–3912 (2014).

    Article  CAS  Google Scholar 

  19. Zhu, J. et al. Demonstration of measuring sea fog with an SNSPD-based lidar system. Sci. Rep. 7, 1–7 (2017).

    Article  Google Scholar 

  20. Carp, S. A. et al. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light. J. Biomed. Opt. 25, 097003 (2020).

    Article  CAS  Google Scholar 

  21. Poon, C.-S. et al. First-in-clinical application of a time-gated diffuse correlation spectroscopy system at 1064 nm using superconducting nanowire single photon detectors in a neuro intensive care unit. Biomed. Opt. Express 13, 1344–1356 (2022).

    Article  CAS  Google Scholar 

  22. Ota, R. Photon counting detectors and their applications ranging from particle physics experiments to environmental radiation monitoring and medical imaging. Radiol. Phys. Technol. 14, 134–148 (2021).

    Article  Google Scholar 

  23. Ceccarelli, F. et al. Recent advances and future perspectives of single-photon avalanche diodes for quantum photonics applications. Adv. Quantum Technol. 4, 2000102 (2021).

    Article  CAS  Google Scholar 

  24. Kim, J., Takeuchi, S., Yamamoto, Y. & Hogue, H. H. Multiphoton detection using visible light photon counter. Appl. Phys. Lett. 74, 902–904 (1999).

    Article  CAS  Google Scholar 

  25. Berggren, K. & Nam, S.-W. in Single-Photon Generation and Detection Vol. 45 (eds Migdall, A. et al.) Ch. 6 (Elsevier, 2013).

  26. Wolff, M. A. et al. Broadband waveguide-integrated superconducting single-photon detectors with high system detection efficiency. Appl. Phys. Lett. 118, 154004 (2021).

    Article  CAS  Google Scholar 

  27. Reddy, D. V., Nerem, R. R., Nam, S. W., Mirin, R. P. & Verma, V. B. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica 7, 1649–1653 (2020).

    Article  Google Scholar 

  28. Hu, P. et al. Detecting single infrared photons toward optimal system detection efficiency. Opt. Express 28, 36884–36891 (2020).

    Article  CAS  Google Scholar 

  29. Chang, J. et al. Detecting telecom single photons with 99.5% system detection efficiency and high time resolution. APL Photonics 6, 036114 (2021).

    Article  CAS  Google Scholar 

  30. Hochberg, Y. et al. Detecting sub-GeV dark matter with superconducting nanowires. Phys. Rev. Lett. 123, 151802 (2019).

    Article  CAS  Google Scholar 

  31. Korzh, B. et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photonics 14, 250–255 (2020).

    Article  CAS  Google Scholar 

  32. Cherednichenko, S., Acharya, N., Novoselov, E. & Drakinskiy, V. Low kinetic inductance superconducting MgB2 nanowires with a 130 ps relaxation time for single-photon detection applications. Supercond. Sci. Technol. 34, 044001 (2021).

    Article  Google Scholar 

  33. Engel, A., Renema, J. J., Il’in, K. & Semenov, A. Detection mechanism of superconducting nanowire single-photon detectors. Supercond. Sci. Technol. 28, 114003 (2015).

    Article  Google Scholar 

  34. Natarajan, C. M., Tanner, M. G. & Hadfield, R. H. Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001 (2012).

    Article  Google Scholar 

  35. Sherman, N. Superconducting nuclear particle detector. Phys. Rev. Lett. 8, 438 (1962).

    Article  Google Scholar 

  36. Johnson, M., Herr, A. & Kadin, A. Bolometric and nonbolometric infrared photoresponses in ultrathin superconducting nbn films. J. Appl. Phys. 79, 7069–7074 (1996).

    Article  CAS  Google Scholar 

  37. Semenov, A. D., Gol’tsman, G. N. & Korneev, A. A. Quantum detection by current carrying superconducting film. Phys. C Supercond. 351, 349–356 (2001).

    Article  CAS  Google Scholar 

  38. Gol’Tsman, G. et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001).

    Article  Google Scholar 

  39. Shibata, H. Review of superconducting nanostrip photon detectors using various superconductors. IEICE Trans. Electron. 104, 429–434 (2021).

    Article  Google Scholar 

  40. Velasco, A. E. et al. High-operating-temperature superconducting nanowire single photon detectors. In Conference on Lasers and Electro-optics QELS_Fundamental Science, FW4C–5 (Optical Society of America, 2016).

  41. Andersson, E., Arpaia, R., Trabaldo, E., Bauch, T. & Lombardi, F. Fabrication and electrical transport characterization of high quality underdoped YBa2Cu3O7−δ nanowires. Supercond. Sci. Technol. 33, 064002 (2020).

    Article  Google Scholar 

  42. Ejrnaes, M. et al. Observation of dark pulses in 10 nm thick YBCO nanostrips presenting hysteretic current voltage characteristics. Supercond. Sci. Technol. 30, 12LT02 (2017).

    Article  Google Scholar 

  43. Lyatti, M. et al. Energy-level quantization and single-photon control of phase slips in YBa2Cu3O7−x nanowires. Nat. Commun. 11, 763 (2020).

    Article  CAS  Google Scholar 

  44. Frenkel, A. et al. Optical response of nongranular high Tc Y1Ba2Cu3O7−x superconducting thin films. J. Appl. Phys. 67, 3054–3068 (1990).

    Article  CAS  Google Scholar 

  45. Amari, P. et al. High-temperature superconducting nanomeanders made by ion irradiation. Supercond. Sci. Technol. 31, 015019 (2018).

    Article  Google Scholar 

  46. Couëdo, F. et al. Dynamic properties of high-Tc superconducting nano-junctions made with a focused helium ion beam. Sci. Rep. 10, 1–9 (2020).

    Article  Google Scholar 

  47. Sterpetti, E., Biscaras, J., Erb, A. & Shukla, A. Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x. Nat. Commun. 8, 1–8 (2017).

    Article  CAS  Google Scholar 

  48. Wang, F., Biscaras, J., Erb, A. & Shukla, A. Superconductor–insulator transition in space charge doped one unit cell Bi2.1Sr1.9CaCu2O8+x. Nat. Commun. 12, 1–6 (2021).

    Google Scholar 

  49. Sandilands, L. J. et al. Origin of the insulating state in exfoliated high-Tc two-dimensional atomic crystals. Phys. Rev. B 90, 081402 (2014).

    Article  CAS  Google Scholar 

  50. Vasquez, R. Intrinsic photoemission signals, surface preparation, and surface stability of high temperature superconductors. J. Electron Spectrosc. Relat. Phenom. 66, 209–222 (1994).

    Article  CAS  Google Scholar 

  51. Poccia, N. et al. Evolution and control of oxygen order in a cuprate superconductor. Nat. Mater. 10, 733–736 (2011).

    Article  CAS  Google Scholar 

  52. Zhao, S. Y. F. et al. Sign-reversing Hall effect in atomically thin high-temperature Bi2.1Sr1.9CaCu2.0O8+δ superconductors. Phys. Rev. Lett. 122, 247001 (2019).

    Article  CAS  Google Scholar 

  53. Yu, Y. et al. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature 575, 156–163 (2019).

    Article  CAS  Google Scholar 

  54. Cybart, S. A. et al. Nano Josephson superconducting tunnel junctions in YBa2Cu3O7−δ directly patterned with a focused helium ion beam. Nat. Nanotechnol. 10, 598–602 (2015).

    Article  CAS  Google Scholar 

  55. Martinez, G. D., Buckley, D., Charaev, I., Dow, D. E. & Berggren, K. K. Superconducting nanowire fabrication using dislocation engineering. In 2019 IEEE MIT Conference (URTC) 1–4 (IEEE, 2019).

  56. Gozar, A., Litombe, N. E., Hoffman, J. E. & Božović, I. Optical nanoscopy of high Tc cuprate nanoconstriction devices patterned by helium ion beams. Nano Lett. 17, 1582–1586 (2017).

    Article  CAS  Google Scholar 

  57. Seifert, P. et al. A high-Tc Van der Waals superconductor based photodetector with ultra-high responsivity and nanosecond relaxation time. 2D Mater. 8, 035053 (2021).

    Article  CAS  Google Scholar 

  58. Gozar, A. et al. High-temperature interface superconductivity between metallic and insulating copper oxides. Nature 455, 782–785 (2008).

    Article  CAS  Google Scholar 

  59. Logvenov, G., Gozar, A. & Bozovic, I. High-temperature superconductivity in a single copper–oxygen plane. Science 326, 699–702 (2009).

    Article  CAS  Google Scholar 

  60. Skocpol, W., Beasley, M. & Tinkham, M. Self-heating hotspots in superconducting thin-film microbridges. J. Appl. Phys. 45, 4054–4066 (1974).

    Article  Google Scholar 

  61. Chiles, J. et al. Superconducting microwire detectors based on WSi with single-photon sensitivity in the near-infrared. Appl. Phys. Lett. 116, 242602 (2020).

    Article  CAS  Google Scholar 

  62. Caloz, M. et al. Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors. J. Appl. Phys. 126, 164501 (2019).

    Article  Google Scholar 

  63. Cheng, R. et al. A 100-pixel photon-number-resolving detector unveiling photon statistics. Nat. Photonics 17, 112–119 (2023).

    Article  CAS  Google Scholar 

  64. Kerman, A. J., Yang, J. K., Molnar, R. J., Dauler, E. A. & Berggren, K. K. Electrothermal feedback in superconducting nanowire single-photon detectors. Phys. Rev. B 79, 100509 (2009).

    Article  Google Scholar 

  65. Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photonics 7, 210–214 (2013).

    Article  CAS  Google Scholar 

  66. Semenov, A. D. Superconducting nanostrip single-photon detectors some fundamental aspects in detection mechanism, technology and performance. Supercond. Sci. Technol. 34, 054002 (2021).

    Article  Google Scholar 

  67. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  CAS  Google Scholar 

  68. Varma, C. M. Colloquium: linear in temperature resistivity and associated mysteries including high temperature superconductivity. Rev. Mod. Phys. 92, 031001 (2020).

    Article  Google Scholar 

  69. Zhou, X. et al. High-temperature superconductivity. Nat. Rev. Phys. 3, 462–465 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the P.J.H. group was partly supported through AFOSR grant FA9550-21-1-0319, through the NSF QII-TAQS programme (grant 1936263), and the Gordon and Betty Moore Foundation EPiQS Initiative through grant GBMF9463 to P.J.H. I.Y.P acknowledges support from the MIT undergraduate research opportunities programme and the Johnson & Johnson research scholars programme. K.K.B. and group members acknowledge support from Brookhaven Science Associates, LLC award number 030814-00001. K.W. and T.T. acknowledge support from JSPS KAKENHI (grant numbers 19H05790, 20H00354 and 21H05233). Thin-film synthesis and characterization at Brookhaven National Laboratory was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. H.X. was supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant GBMF9074. O. Medeiros acknowledges funding from the NDSEG Fellowship Program. We acknowledge valuable discussions with S. Rescia (BNL) and G. Carini (BNL) and their significant help during the planning and development of this research work. The authors thank J. Daley and M. Mondol of the MIT Nanostructures laboratory for the technical support related to electron-beam fabrication and helium ion microscopy. We also thank F. Zhao (Harvard), Prof. Schilling (UZH) and M. Karmantsov (MMDES) for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

D.A.B. and I.C. conceived and designed the project. I.C. and D.A.B. performed transport measurements. I.C. performed the photoresponse measurements. D.A.B., I.C. and I.Y.P. fabricated the devices. B.A.B., M.C. and I.C. designed the readout circuit. O.M. simulated the readout circuit. I.C. and D.A.B. analysed the experimental data with help from I.B., P.J.-H. and K.K.B. I.D. provided BSCCO crystals. X.H., A.T.B. and I.B. synthesized and characterized the LSCO–LCO bilayer films. T.T. and K.W. provided high-quality hBN crystals. I.C. and D.A.B. wrote the manuscript with input from all coauthors. P.J.-H., I.B. and K.K.B. supervised the project. All authors contributed to discussions.

Corresponding authors

Correspondence to I. Charaev, D. A. Bandurin or K. K. Berggren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Cheryl Feuillet-Palma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charaev, I., Bandurin, D.A., Bollinger, A.T. et al. Single-photon detection using high-temperature superconductors. Nat. Nanotechnol. 18, 343–349 (2023). https://doi.org/10.1038/s41565-023-01325-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01325-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing