Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrically switchable anisotropic polariton propagation in a ferroelectric van der Waals semiconductor

Abstract

Tailoring of the propagation dynamics of exciton-polaritons in two-dimensional quantum materials has shown extraordinary promise to enable nanoscale control of electromagnetic fields. Varying permittivities along crystal directions within layers of material systems, can lead to an in-plane anisotropic dispersion of polaritons. Exploiting this physics as a control strategy for manipulating the directional propagation of the polaritons is desired and remains elusive. Here we explore the in-plane anisotropic exciton-polariton propagation in SnSe, a group-IV monochalcogenide semiconductor that forms ferroelectric domains and shows room-temperature excitonic behaviour. Exciton-polaritons are launched in SnSe multilayer plates, and their propagation dynamics and dispersion are studied. This propagation of exciton-polaritons allows for nanoscale imaging of the in-plane ferroelectric domains. Finally, we demonstrate the electric switching of the exciton-polaritons in the ferroelectric domains of this complex van der Waals system. The study suggests that systems such as group-IV monochalcogenides could serve as excellent ferroic platforms for actively reconfigurable polaritonic optical devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Abundant FE domains in the SnSe multilayer plate.
Fig. 2: Near-field nano-imaging of the FE domains.
Fig. 3: Near-field nano-imaging of EPs on SnSe.
Fig. 4: Anisotropy of EPs in SnSe.
Fig. 5: Electrically switching an EP in SnSe with metal electrodes.
Fig. 6: Electrically switching an EP in SnSe with graphene/h-BN electrodes.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other finding of this study are available at the online depository Zenodo (https://doi.org/10.5281/zenodo.7395377).

References

  1. Basov, D. N., Fogler, M. M. & de Abajo, F. J. G. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

  2. Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).

    Article  CAS  Google Scholar 

  3. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2016).

    Article  Google Scholar 

  4. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  CAS  Google Scholar 

  5. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  CAS  Google Scholar 

  6. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  CAS  Google Scholar 

  7. Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    Article  CAS  Google Scholar 

  8. Hu, F. et al. Imaging exciton–polariton transport in MoSe2 waveguides. Nat. Photonics 11, 356–360 (2017).

    Article  CAS  Google Scholar 

  9. Fei, Z. et al. Nano-optical imaging of WSe2 waveguide modes revealing light-exciton interactions. Phys. Rev. B. 94, 081402 (2016).

    Article  Google Scholar 

  10. Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    Article  CAS  Google Scholar 

  11. Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).

    Article  CAS  Google Scholar 

  12. Martin, L. W. & Rappe, A. M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 16087 (2016).

    Article  Google Scholar 

  13. Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).

    Article  CAS  Google Scholar 

  14. Higashitarumizu, N. et al. Purely in-plane ferroelectricity in monolayer SnS at room temperature. Nat. Commun. 11, 2428 (2020).

  15. Xiao, J. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 120, 227601 (2018).

    Article  CAS  Google Scholar 

  16. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    Article  CAS  Google Scholar 

  17. Wu, M. Two-dimensional van der Waals ferroelectrics: scientific and technological opportunities. ACS Nano 15, 9229–9237 (2021).

    Article  CAS  Google Scholar 

  18. Chang, K. et al. Microscopic manipulation of ferroelectric domains in SnSe monolayers at room temperature. Nano Lett. 20, 6590–6597 (2020).

    Article  CAS  Google Scholar 

  19. Fei, R., Kang, W. & Yang, L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett. 117, 097601 (2016).

    Article  Google Scholar 

  20. Shi, G. & Kioupakis, E. Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe. Nano Lett. 15, 6926–6931 (2015).

    Article  Google Scholar 

  21. Meléndez, J. J., González-Romero, R. L. & Antonelli, A. Quasiparticle bands and optical properties of SnSe from an ab initio approach. Comp. Mater. Sci. 152, 107–112 (2018).

    Article  Google Scholar 

  22. Gruverman, A., Alexe, M. & Meier, D. Piezoresponse force microscopy and nanoferroic phenomena. Nat. Commun. 10, 1661 (2019).

    Article  Google Scholar 

  23. Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. A. 362, 787–805 (2004).

    Article  CAS  Google Scholar 

  24. Zhao, L.-D. et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014).

    Article  CAS  Google Scholar 

  25. Nguyen, H. T. et al. Temperature dependence of the dielectric function and critical points of -SnS from 27 to 350 K. Sci. Rep. 10, 18396 (2020).

  26. Beal, A. R., Knights, J. C. & Liang, W. Y. Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination. J. Phys. C. Solid State Phys. 5, 3540–3551 (1972).

    Article  CAS  Google Scholar 

  27. Schmidt, T., Lischka, K. & Zulehner, W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 45, 8989–8994 (1992).

    Article  CAS  Google Scholar 

  28. Cassabois, G., Valvin, P. & Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 10, 262–266 (2016).

    Article  CAS  Google Scholar 

  29. Zhou, J., Zhang, S. & Li, J. Normal-to-topological insulator martensitic phase transition in group-IV monochalcogenides driven by light. NPG Asia Mater. 12, 2 (2020).

    Article  CAS  Google Scholar 

  30. Hu, F. et al. Imaging propagative exciton polaritons in atomically thin WSe2 waveguides. Phys. Rev. B. 100, 121301 (2019).

  31. Kockum, A. F., Miranowicz, A., Liberato, S. D., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–40 (2019).

    Article  Google Scholar 

  32. Luo, Y. et al. In situ nanoscale imaging of moiré superlattices in twisted van der Waals heterostructures. Nat. Commun. 11, 4209 (2020).

    Article  Google Scholar 

  33. Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

    Article  CAS  Google Scholar 

  34. Autore, M. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light. Sci. Appl. 7, 17172 (2017).

    Article  Google Scholar 

  35. Hu, H. et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat. Commun. 7, 12334 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Akey and J. Gardener at the Centre for Nanoscale Systems (CNS) at Harvard University for the TEM sample preparation and imaging. We thank Y. Han at Rice University for the helpful discussion on the TEM results. Part of the work was performed at CNS support by the National Science Foundation (NSF) under award no. ECCS-2025158. Y.L. was supported by the US Department of Energy under award no. DE-SC0019300. N.M. and J.K acknowledge the support by the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE-SC0020042 and the support from the STC Center for Integrated Quantum Materials, NSF grant number DMR-1231319. X.J. and J.K. acknowledge the support from the US Army Research Office (ARO) MURI project under grant number W911NF-18-1-0432. D.D., H.P. and P.K. acknowledge support from US Air Force Office of Scientific Research grants (nos. FA2386-21-1-4086 for P.K. and FA9550-17-1-0002 for H.P.). H.P. and P.K. acknowledge support from Department of Defense Vannevar Bush Faculty Fellowship (grant nos. N00014-16-1-2825 for H.P. and N00014-18-1-2877 for P.K.), Samsung Electronics and the NSF (PHY-1506284 for H.P.)

Author information

Authors and Affiliations

Authors

Contributions

Y.L., N.M. and W.L.W. conceived the experiment, Y.L., N.M., J.K. and W.L.W. planned the investigations. N.M., M.H-.C. and X.J. fabricated the pristine SnSe samples and carried out preliminary characterizations with J.K. and V.T. D.D. and Y.L. fabricated the device samples. Y.L. carried out the s-SNOM and LPFM experiments and analysed the data with N.M., J.K. and W.L.W. D.D. and Y.L. carried out the transport measurements under supervision of P.K. and H.P. Y.L. performed theoretical calculations and finite-difference time domain simulations. K.W and T.T provided the h-BN crystal. All authors discussed results and wrote the manuscript.

Corresponding author

Correspondence to William L. Wilson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Cheng-Wei Qiu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Mao, N., Ding, D. et al. Electrically switchable anisotropic polariton propagation in a ferroelectric van der Waals semiconductor. Nat. Nanotechnol. 18, 350–356 (2023). https://doi.org/10.1038/s41565-022-01312-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01312-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing