Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photocarrier-induced persistent structural polarization in soft-lattice lead halide perovskites

Abstract

The success of the lead halide perovskites in diverse optoelectronics has motivated considerable interest in their fundamental photocarrier dynamics. Here we report the discovery of photocarrier-induced persistent structural polarization and local ferroelectricity in lead halide perovskites. Photoconductance studies of thin-film single-crystal CsPbBr3 at 10 K reveal long-lasting persistent photoconductance with an ultralong photocarrier lifetime beyond 106 s. X-ray diffraction studies reveal that photocarrier-induced structural polarization is present up to a critical freezing temperature. Photocapacitance studies at cryogenic temperatures further demonstrate a systematic local phase transition from linear dielectric to paraelectric and relaxor ferroelectric under increasing illumination. Our theoretical investigations highlight the critical role of photocarrier–phonon coupling and large polaron formation in driving the local relaxor ferroelectric phase transition. Our findings show that this photocarrier-induced persistent structural polarization enables the formation of ferroelectric nanodomains at low temperature, which suppress carrier recombination and offer the possibility of exploring intriguing carrier–phonon interplay and the rich polaron photophysics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Difference between conventional and ferroelectric large polarons.
Fig. 2: The long-lived photocarriers.
Fig. 3: Photocarrier-induced structural distortion.
Fig. 4: Emergence of local relaxor ferroelectric behaviour under illumination.
Fig. 5: DFT calculations.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The custom codes that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  CAS  Google Scholar 

  2. Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).

    Article  CAS  Google Scholar 

  3. Zhu, H., Miyata, K., Fu, Y., Wang, J. & Joshi, P. P. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1414 (2016).

    Article  CAS  Google Scholar 

  4. Wang, Y. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 15, 768–775 (2020).

    Article  CAS  Google Scholar 

  5. Niesner, D. et al. Giant Rashba splitting in CH3NH3PbBr3 organic–inorganic perovskite. Phys. Rev. Lett. 117, 126401 (2016).

    Article  Google Scholar 

  6. Zhai, Y. et al. Giant Rashba splitting in 2D organic–inorganic halide perovskites measured by transient spectroscopies. Sci. Adv. 3, e1700704 (2017).

    Article  Google Scholar 

  7. Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020).

    Article  CAS  Google Scholar 

  8. Steirer, K. X. et al. Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett. 1, 360–366 (2016).

    Article  CAS  Google Scholar 

  9. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  CAS  Google Scholar 

  10. Wang, Y. et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%. Science 365, 591–595 (2019).

    Article  CAS  Google Scholar 

  11. Zhu, X. Y. & Podzorov, V. Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6, 4758–4761 (2015).

    Article  CAS  Google Scholar 

  12. Zheng, F. & Wang, L. Large polaron formation and its effect on electron transport in hybrid perovskites. Energy Environ. Sci. 12, 1219–1230 (2019).

    Article  CAS  Google Scholar 

  13. Miyata, K., Atallah, T. L. & Zhu, X.-Y. Lead halide perovskites: crystal–liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 3, e1701469 (2017).

    Article  Google Scholar 

  14. Puppin, M. et al. Evidence of large polarons in photoemission band mapping of the perovskite semiconductor CsPbBr3. Phys. Rev. Lett. 124, 206402 (2020).

    Article  CAS  Google Scholar 

  15. Guzelturk, B. et al. Visualization of dynamic polaronic strain fields in hybrid lead halide perovskites. Nat. Mater. 20, 618–623 (2021).

    Article  CAS  Google Scholar 

  16. Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

    Article  CAS  Google Scholar 

  17. Frost, J. M., Butler, K. T. & Walsh, A. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Mater. 2, 081506 (2014).

    Article  Google Scholar 

  18. Liu, S. et al. Ferroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskites. J. Phys. Chem. Lett. 6, 693–699 (2015).

    Article  CAS  Google Scholar 

  19. Strelcov, E. et al. CH3NH3PbI3 perovskites: ferroelasticity revealed. Sci. Adv. 3, e1602165 (2017).

    Article  Google Scholar 

  20. Hoque, M. N. F. et al. Polarization and dielectric study of methylammonium lead iodide thin film to reveal its nonferroelectric nature under solar cell operating conditions. ACS Energy Lett. 1, 142–149 (2016).

    Article  CAS  Google Scholar 

  21. Liu, Y. et al. Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite. Nat. Mater. 17, 1013–1019 (2018).

    Article  CAS  Google Scholar 

  22. Schulz, A. D. et al. On the ferroelectricity of CH3NH3PbI3 perovskites. Nat. Mater. 18, 1050 (2019).

    Article  CAS  Google Scholar 

  23. Miyata, K. & Zhu, X.-Y. Ferroelectric large polarons. Nat. Mater. 17, 379–381 (2018).

    Article  CAS  Google Scholar 

  24. Wang, F. et al. Solvated electrons in solids—ferroelectric large polarons in lead halide perovskites. J. Am. Chem. Soc. 143, 5–16 (2021).

    Article  CAS  Google Scholar 

  25. Huang, H. Ferroelectric photovoltaics. Nat. Photon. 4, 134–135 (2010).

  26. Morris, M. R., Pendlebury, S. R., Hong, J., Dunn, S. & Durrant, J. R. Effect of internal electric fields on charge carrier dynamics in a ferroelectric material for solar energy conversion. Adv. Mater. 28, 7123–7128 (2016).

    Article  CAS  Google Scholar 

  27. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article  CAS  Google Scholar 

  28. Zhang, J., Li, C., Chen, M. & Huang, K. Real-time observation of ion migration in halide perovskite by photoluminescence imaging microscopy. J. Phys. D 54, 044002 (2021).

  29. Zhang, T. et al. Understanding the relationship between ion migration and the anomalous hysteresis in high-efficiency perovskite solar cells: a fresh perspective from halide substitution. Nano Energy 26, 620–630 (2016).

    Article  CAS  Google Scholar 

  30. Zhong, Y., Hufnagel, M., Thelakkat, M., Li, C. & Huettner, S. Role of PCBM in the suppression of hysteresis in perovskite solar cells. Adv. Funct. Mater. 30, 1908920 (2020).

    Article  CAS  Google Scholar 

  31. Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018).

    Article  CAS  Google Scholar 

  32. Tsai, H. et al. A sensitive and robust thin-film X-ray detector using 2D-layered perovskite diodes. Sci. Adv. 6, eaay0815 (2020).

  33. Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).

    Article  Google Scholar 

  34. Park, M. et al. Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite. Nat. Commun. 9, 2525 (2018).

    Article  Google Scholar 

  35. Oga, H., Saeki, A., Ogomi, Y., Hayase, S. & Seki, S. Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc. 136, 13818–13825 (2014).

    Article  CAS  Google Scholar 

  36. Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

    Article  CAS  Google Scholar 

  37. Schlaus, A. P. et al. How lasing happens in CsPbBr3 perovskite nanowires. Nat. Commun. 10, 265 (2019).

    Article  Google Scholar 

  38. Miyata, K. et al. Liquid-like dielectric response is an origin of long polaron lifetime exceeding 10 μs in lead bromide perovskites. J. Chem. Phys. 152, 084704 (2020).

    Article  CAS  Google Scholar 

  39. Abdelkefi, H., Khemakhem, H., Vélu, G., Carru, J. C. & Von der Mühll, R. Dielectric properties and ferroelectric phase transitions in BaxSr1−xTiO3 solid solution. J. Alloys Compd 399, 1–6 (2005).

  40. Onoda-Yamamuro, N., Matsuo, T. & Suga, H. Dielectric study of CH3NH3PbX3 (X = Cl, Br, I). J. Phys. Chem. Solids 53, 935–939 (1992).

    Article  CAS  Google Scholar 

  41. Wilson, J. N., Frost, J. M., Wallace, S. K. & Walsh, A. Dielectric and ferroic properties of metal halide perovskites. APL Mater. 7, 010901 (2019).

    Article  Google Scholar 

  42. Viehland, D., Jang, S. J., Cross, L. E. & Wuttig, M. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys. 68, 2916–2921 (1990).

    Article  CAS  Google Scholar 

  43. Glazounov, A. E. & Tagantsev, A. K. Direct evidence for Vögel–Fulcher freezing in relaxor ferroelectrics. Appl. Phys. Lett. 73, 856–858 (1998).

    Article  CAS  Google Scholar 

  44. Viehland, D., Li, J. F., Jang, S. J., Cross, L. E. & Wuttig, M. Dipolar-glass model for lead magnesium niobate. Phys. Rev. B 43, 8316–8320 (1991).

    Article  CAS  Google Scholar 

  45. Westphal, V., Kleemann, W. & Glinchuk, M. D. Diffuse phase transitions and random-field-induced domain states of the ‘relaxor’ ferroelectric PbMg1/3Nb2/3O3. Phys. Rev. Lett. 68, 847–850 (1992).

    Article  CAS  Google Scholar 

  46. Krogstad, M. J. et al. The relation of local order to material properties in relaxor ferroelectrics. Nat. Mater. 17, 718–724 (2018).

    Article  CAS  Google Scholar 

  47. Kumar, A. et al. Atomic-resolution electron microscopy of nanoscale local structure in lead-based relaxor ferroelectrics. Nat. Mater. 20, 62–67 (2021).

    Article  CAS  Google Scholar 

  48. Liu, Y. et al. Chirality-induced relaxor properties in ferroelectric polymers. Nat. Mater. 19, 1169–1174 (2020).

    Article  CAS  Google Scholar 

  49. Li, W., She, Y., Vasenko, A. S. & Prezhdo, O. V. Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites. Nanoscale 13, 10239–10265 (2021).

    Article  Google Scholar 

  50. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  51. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  52. Garrity, K. F., Bennett, J. W., Rabe, K. M. & Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446–452 (2014).

  53. Kang, B. & Biswas, K. Exploring polaronic, excitonic structures and luminescence in Cs4PbBr6/CsPbBr3. J. Phys. Chem. Lett. 9, 830–836 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X.D. acknowledges partial support by the Office of Naval Research through grant no. N00014-22-1-2631 for device fabrication and characterization. Y.P. acknowledges support by the Center for Hybrid Organic Inorganic Semiconductors for Energy an Energy Frontier Research Center funded by the Office of Basic Energy Sciences, office of science within the US Department of Energy for the theoretical part of the work. T.J.S. acknowledges the Lawrence Livermore National Laboratory Graduate Research Scholar Program and funding support from Lawrence Livermore National Laboratory LDRD 20-S1-004. Part of this work was performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The X-ray diffraction measurements used the resources of the Center for Nanophase Materials Sciences and Spallation Neutron Source, which are DOE Office of Science User Facilities. Y.H. acknowledges support by the National Science Foundation EFRI-1433541 for partial support of material preparation. We acknowledge the Nanoelectronics Research Facility at UCLA for device fabrication technical support.

Author information

Authors and Affiliations

Authors

Contributions

X.D. conceived the research. Q.Q., Z.W. and X.D. designed the experiments. Q.Q. grew the material, fabricated the devices and performed the optoelectrical measurements. L.W., P.W., D.X. and Y.H. contributed to the device fabrication or characterization. Z.W. contributed to the transport measurements. J.K.K., J.Z. and H.R. contributed to the X-ray diffraction experiments. H.T., T.J.S. and Y.P. conducted the first-principles calculations and wrote the relevant discussions. Q.Q., Z.W. and X.D. conducted the data analysis and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yuan Ping or Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Doru Lupascu and Kiyoshi Miyata for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Table 1 and refs. 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Q., Wan, Z., Takenaka, H. et al. Photocarrier-induced persistent structural polarization in soft-lattice lead halide perovskites. Nat. Nanotechnol. 18, 357–364 (2023). https://doi.org/10.1038/s41565-022-01306-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01306-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing