Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Room-temperature coherent optical manipulation of hole spins in solution-grown perovskite quantum dots


Manipulation of solid-state spin coherence is an important paradigm for quantum information processing. Current systems either operate at very low temperatures or are difficult to scale up. Developing low-cost, scalable materials whose spins can be coherently manipulated at room temperature is thus highly attractive for a sustainable future of quantum information science. Here we report ambient-condition all-optical initialization, manipulation and readout of hole spins in an ensemble of solution-grown CsPbBr3 perovskite quantum dots with a single hole in each dot. The hole spins are initialized by sub-picosecond electron scavenging following circularly polarized femtosecond-pulse excitation. A transverse magnetic field induces spin precession, and a second off-resonance femtosecond-pulse coherently rotates hole spins via strong light–matter interaction. These operations accomplish near-complete quantum-state control, with a coherent rotation angle close to the π radian, of hole spins at room temperature.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: System design and experimental set-up.
Fig. 2: Room-temperature hole spin precession in AQ-functionalized CsPbBr3 QDs.
Fig. 3: Ultrafast rotation using the OSE.
Fig. 4: Room-temperature hole spin manipulation in AQ-functionalized CsPbBr3 QDs.

Data availability

All data are available in the main text or Supplementary Information and can be obtained upon request from the corresponding author. The data are also available via Figshare at Source data are provided with this paper.


  1. Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. & Petta, J. R. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).

    Article  CAS  Google Scholar 

  2. Michler, P. Quantum Dots for Quantum Information Technologies Vol. 237 (Springer, 2017).

  3. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  CAS  Google Scholar 

  4. Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

    Article  CAS  Google Scholar 

  5. Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008).

    Article  CAS  Google Scholar 

  6. Nowack, K. C., Koppens, F. H. L., Nazarov Yu, V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

    Article  CAS  Google Scholar 

  7. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    Article  CAS  Google Scholar 

  8. Gupta, J. A., Knobel, R., Samarth, N. & Awschalom, D. D. Ultrafast manipulation of electron spin coherence. Science 292, 2458–2461 (2001).

  9. Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

  10. Zhang, J., Tang, Y., Lee, K. & Ouyang, M. Tailoring light–matter–spin interactions in colloidal hetero-nanostructures. Nature 466, 91–95 (2010).

    Article  CAS  Google Scholar 

  11. Greilich, A. et al. Ultrafast optical rotations of electron spins in quantum dots. Nat. Phys. 5, 262–266 (2009).

    Article  CAS  Google Scholar 

  12. Carter, S. G., Chen, Z. & Cundiff, S. T. Ultrafast below-resonance Raman rotation of electron spins in GaAs quantum wells. Phys. Rev. B 76, 201308 (2007).

    Article  Google Scholar 

  13. Wu, Y. et al. Selective optical control of electron spin coherence in singly charged GaAs-Al0.3Ga0.7As quantum dots. Phys. Rev. Lett. 99, 097402 (2007).

    Article  Google Scholar 

  14. Ramsay, A. J. et al. Fast optical preparation, control, and readout of a single quantum dot spin. Phys. Rev. Lett. 100, 197401 (2008).

    Article  CAS  Google Scholar 

  15. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  CAS  Google Scholar 

  16. Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164–168 (2015).

    Article  CAS  Google Scholar 

  17. García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).

  18. Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).

    Article  CAS  Google Scholar 

  19. Even, J., Pedesseau, L., Jancu, J.-M. & Katan, C. Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 4, 2999–3005 (2013).

    Article  CAS  Google Scholar 

  20. Odenthal, P. et al. Spin-polarized exciton quantum beating in hybrid organic–inorganic perovskites. Nat. Phys. 13, 894–899 (2017).

    Article  CAS  Google Scholar 

  21. Giovanni, D. et al. Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in CH3NH3PbI3 perovskite thin films. Nano Lett. 15, 1553–1558 (2015).

    Article  CAS  Google Scholar 

  22. Zhou, M., Sarmiento, J. S., Fei, C., Zhang, X. & Wang, H. Effect of composition on the spin relaxation of lead halide perovskites. J. Phys. Chem. Lett. 11, 1502–1507 (2020).

    Article  CAS  Google Scholar 

  23. Chen, X. et al. Impact of layer thickness on the charge carrier and spin coherence lifetime in two-dimensional layered perovskite single crystals. ACS Energy Lett. 3, 2273–2279 (2018).

    Article  CAS  Google Scholar 

  24. Li, Y., Luo, X., Liu, Y., Lu, X. & Wu, K. Size- and composition-dependent exciton spin relaxation in lead halide perovskite quantum dots. ACS Energy Lett. 5, 1701–1708 (2020).

    Article  CAS  Google Scholar 

  25. Strohmair, S. et al. Spin polarization dynamics of free charge carriers in CsPbI3 nanocrystals. Nano Lett. 20, 4724–4730 (2020).

    Article  CAS  Google Scholar 

  26. Yang, Y. et al. Large polarization-dependent exciton optical Stark effect in lead iodide perovskites. Nat. Commun. 7, 12613 (2016).

    Article  CAS  Google Scholar 

  27. Li, Y., He, S., Luo, X., Lu, X. & Wu, K. Strong spin-selective optical Stark effect in lead halide perovskite quantum dots. J. Phys. Chem. Lett. 11, 3594–3600 (2020).

    Article  CAS  Google Scholar 

  28. Giovanni, D. et al. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites. Sci. Adv. 2, e1600477 (2016).

    Article  Google Scholar 

  29. Yumoto, G. et al. Strong spin-orbit coupling inducing Autler-Townes effect in lead halide perovskite nanocrystals. Nat. Commun. 12, 3026 (2021).

    Article  Google Scholar 

  30. Tao, W., Zhou, Q. & Zhu, H. Dynamic polaronic screening for anomalous exciton spin relaxation in two-dimensional lead halide perovskites. Sci. Adv. 6, eabb7132 (2020).

    Article  Google Scholar 

  31. Rainò, G. et al. Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots. Nat. Commun. 13, 2587 (2022).

    Article  Google Scholar 

  32. Park, Y.-S., Guo, S., Makarov, N. S. & Klimov, V. I. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 9, 10386–10393 (2015).

    Article  CAS  Google Scholar 

  33. Zhu, H., Song, N. H. & Lian, T. Q. Controlling charge separation and recombination rates in CdSe/ZnS type I core-shell quantum dots by shell thicknesses. J. Am. Chem. Soc. 132, 15038–15045 (2010).

    Article  CAS  Google Scholar 

  34. Mandal, S., George, L. & Tkachenko, N. V. Charge transfer dynamics in CsPbBr3 perovskite quantum dots–anthraquinone/fullerene (C60) hybrids. Nanoscale 11, 862–869 (2019).

    Article  CAS  Google Scholar 

  35. Luo, X. et al. Mechanisms of triplet energy transfer across the inorganic nanocrystal/organic molecule interface. Nat. Commun. 11, 28 (2020).

    Article  CAS  Google Scholar 

  36. Song, N., Zhu, H., Jin, S., Zhan, W. & Lian, T. Poisson-distributed electron-transfer dynamics from single quantum dots to C60 molecules. ACS Nano 5, 613–621 (2010).

    Article  Google Scholar 

  37. Becker, M. A. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).

    Article  CAS  Google Scholar 

  38. Yin, C. et al. Bright-exciton fine-structure splittings in single perovskite nanocrystals. Phys. Rev. Lett. 119, 026401 (2017).

    Article  Google Scholar 

  39. Tamarat, P. et al. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nat. Mater. 18, 717–724 (2019).

    Article  CAS  Google Scholar 

  40. Han, Y. et al. Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots. Nat. Mater. 21, 1282–1289 (2022).

    Article  CAS  Google Scholar 

  41. Grigoryev, P. S., Belykh, V. V., Yakovlev, D. R., Lhuillier, E. & Bayer, M. Coherent spin dynamics of electrons and holes in CsPbBr3 colloidal nanocrystals. Nano Lett. 21, 8481–8487 (2021).

    Article  CAS  Google Scholar 

  42. Crane, M. J. et al. Coherent spin precession and lifetime-limited spin dephasing in CsPbBr3 perovskite nanocrystals. Nano Lett. 20, 8626–8633 (2020).

    Article  CAS  Google Scholar 

  43. Tice, D. B., Weinberg, D. J., Mathew, N., Chang, R. P. H. & Weiss, E. A. Measurement of wavelength-dependent polarization character in the absorption anisotropies of ensembles of CdSe nanorods. J. Phys. Chem. C 117, 13289–13296 (2013).

    Article  CAS  Google Scholar 

  44. Li, Y., Luo, X., Ding, T., Lu, X. & Wu, K. Size- and halide-dependent auger recombination in lead halide perovskite nanocrystals. Angew. Chem. Int. Ed. 59, 14292–14295 (2020).

    Article  CAS  Google Scholar 

  45. Kroutvar, M. et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004).

    Article  CAS  Google Scholar 

  46. Gupta, J. A., Awschalom, D. D., Efros, A. L. & Rodina, A. V. Spin dynamics in semiconductor nanocrystals. Phys. Rev. B 66, 125307 (2002).

    Article  Google Scholar 

  47. Ye, Z., Sun, D. & Heinz, T. F. Optical manipulation of valley pseudospin. Nat. Phys. 13, 26–29 (2017).

    Article  CAS  Google Scholar 

  48. Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014).

  49. Li, Y. et al. Excitonic Bloch–Siegert shift in CsPbI3 perovskite quantum dots. Nat. Commun. 13, 5559 (2022).

    Article  CAS  Google Scholar 

  50. Chen, P., Piermarocchi, C., Sham, L. J., Gammon, D. & Steel, D. G. Theory of quantum optical control of a single spin in a quantum dot. Phys. Rev. B 69, 075320 (2004).

    Article  Google Scholar 

  51. Dong, Y. et al. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 18, 3716–3722 (2018).

    Article  CAS  Google Scholar 

  52. Li, Y. et al. On the absence of a phonon bottleneck in strongly-confined CsPbBr3 perovskite nanocrystals. Chem. Sci. 10, 5983–5989 (2019).

    Article  CAS  Google Scholar 

  53. Maes, J. et al. Light absorption coefficient of CsPbBr3 perovskite nanocrystals. J. Phys. Chem. Lett. 9, 3093–3097 (2018).

    Article  CAS  Google Scholar 

  54. He, S., Han, Y., Guo, J. & Wu, K. Long-lived delayed emission from CsPbBr3 perovskite nanocrystals for enhanced photochemical reactivity. ACS Energy Lett. 6, 2786–2791 (2021).

    Article  CAS  Google Scholar 

  55. Puthenpurayil, J., Cheng, O. H.-C., Qiao, T., Rossi, D. & Son, D. H. On the determination of absorption cross section of colloidal lead halide perovskite quantum dots. J. Chem. Phys. 151, 154706 (2019).

    Article  Google Scholar 

Download references


K.W. acknowledges financial support from the Chinese Academy of Sciences (grant number YSBR-007), the Ministry of Science and Technology of China (grant number 2018YFA0208703), the National Natural Science Foundation of China (grant number 22173098) and the Dalian Institute of Chemical Physics (grant number DICP I202106).

Author information

Authors and Affiliations



K.W. conceived the idea and designed the project. X.L. and Y.H. synthesized the samples, performed the spectroscopy with the help of J.Z. and analysed the data. K.W. wrote the manuscript with input from all authors. X.L. and Y.H. contributed equally to this work.

Corresponding author

Correspondence to Kaifeng Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Paulina Plochocka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1–4, Figs. 1–16 and Tables 1–6.

Source data

Source Data Fig. 1

Spreadsheet of source data for Fig. 1.

Source Data Fig. 2

Spreadsheet of source data for Fig. 2.

Source Data Fig. 3

Spreadsheet of source data for Fig. 3.

Source Data Fig. 4

Spreadsheet of source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Han, Y., Zhu, J. et al. Room-temperature coherent optical manipulation of hole spins in solution-grown perovskite quantum dots. Nat. Nanotechnol. 18, 124–130 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research