Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo surface-enhanced Raman scattering nanosensor for the real-time monitoring of multiple stress signalling molecules in plants

Subjects

Abstract

When under stress, plants release molecules to activate their defense system. Detecting these stress-related molecules offers the possibility to address stress conditions and prevent the development of diseases. However, detecting endogenous signalling molecules in living plants remains challenging due to low concentrations of these analytes and interference with other compounds; additionally, many methods currently used are invasive and labour-intensive. Here we show a non-destructive surface-enhanced Raman scattering (SERS)-based nanoprobe for the real-time detection of multiple stress-related endogenous molecules in living plants. The nanoprobe, which is placed in the intercellular space, is optically active in the near-infrared region (785 nm) to avoid interferences from plant autofluorescence. It consists of a Si nanosphere surrounded by a corrugated Ag shell modified by a water-soluble cationic polymer poly(diallyldimethylammonium chloride), which can interact with multiple plant signalling molecules. We measure a SERS enhancement factor of 2.9 × 107 and a signal-to-noise ratio of up to 64 with an acquisition time of ~100 ms. To show quantitative multiplex detection, we adopted a binding model to interpret the SERS intensities of two different analytes bound to the SERS hot spot of the nanoprobe. Under either abiotic or biotic stress, our optical nanosensors can successfully monitor salicylic acid, extracellular adenosine triphosphate, cruciferous phytoalexin and glutathione in Nasturtium officinale, Triticum aestivum L. and Hordeum vulgare L.—all stress-related molecules indicating the possible onset of a plant disease. We believe that plasmonic nanosensor platforms can enable the early diagnosis of stress, contributing to a timely disease management of plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sensor design and characterization for AgNS@PDDA nanoparticles.
Fig. 2: Localization of AgNS@PDDA nanoprobes in plants.
Fig. 3: Multiplex detection of plant signalling molecules in vitro.
Fig. 4: Detection of plant signalling molecules from living plants under abiotic stresses.
Fig. 5: Early diagnosis of fungal disease in crop plants.
Fig. 6: Analysis of the SERS signals from infected barley and wheat.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the Article and Supplementary Information. Raw data of the results reported in this study are available via figshare at https://figshare.com/articles/dataset/In_vivo_SERS_nanosensor_for_plant_signaling_molecules/21316554. All other relevant data and findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Durrant, W. E. & Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol. 42, 185–209 (2004).

    Article  CAS  Google Scholar 

  2. Koornneef, A. & Pieterse, C. M. Cross talk in defense signaling. Plant Physiol. 146, 839–844 (2008).

    Article  CAS  Google Scholar 

  3. Pieterse, C. M., Leon-Reyes, A., Van der Ent, S., Van & Wees, S. C. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5, 308–316 (2009).

    Article  CAS  Google Scholar 

  4. Gaffney, T. et al. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261, 754–756 (1993).

    Article  CAS  Google Scholar 

  5. Lim, G. H. et al. The plant cuticle regulates apoplastic transport of salicylic acid during systemic acquired resistance. Sci. Adv. 6, eaaz0478 (2020).

    Article  CAS  Google Scholar 

  6. Chivasa, S. et al. Extracellular ATP is a regulator of pathogen defence in plants. Plant J. 60, 436–448 (2009).

    Article  CAS  Google Scholar 

  7. Song, C. J., Steinebrunner, I., Wang, X., Stout, S. C. & Roux, S. J. Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. Plant Physiol. 140, 1222–1232 (2006).

    Article  CAS  Google Scholar 

  8. Pedras, M. S., Okanga, F. I., Zaharia, I. L. & Khan, A. Q. Phytoalexins from crucifers: synthesis, biosynthesis, and biotransformation. Phytochemistry 53, 161–176 (2000).

    Article  CAS  Google Scholar 

  9. Kocsy, G., Galiba, G. & Brunold, C. Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiol. Plant. 113, 158–164 (2001).

    Article  CAS  Google Scholar 

  10. Noctor, G. et al. Glutathione in plants: an integrated overview. Plant Cell Environ. 35, 454–484 (2012).

    Article  CAS  Google Scholar 

  11. Zhu, J.-K. Abiotic stress signaling and responses in plants. Cell 167, 313–324 (2016).

    Article  CAS  Google Scholar 

  12. Toyota, M. et al. Glutamate triggers long-distance, calcium-based plant defense signaling. Science 361, 1112–1115 (2018).

    Article  CAS  Google Scholar 

  13. Berens, M. L. et al. Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Proc. Natl Acad. Sci. USA 116, 2364–2373 (2019).

    Article  CAS  Google Scholar 

  14. Lew, T. T. S. et al. Species-independent analytical tools for next-generation agriculture. Nat. Plants 6, 1408–1417 (2020).

    Article  Google Scholar 

  15. Wu, H. et al. Monitoring plant health with near-infrared fluorescent H2O2 nanosensors. Nano Lett. 20, 2432–2442 (2020).

    Article  CAS  Google Scholar 

  16. Lew, T. T. S., Park, M., Cui, J. & Strano, M. S. Plant nanobionic sensors for arsenic detection. Adv. Mater. 33, 2005683 (2021).

    Article  CAS  Google Scholar 

  17. Ang, M. C.-Y. et al. Nanosensor detection of synthetic auxins in planta using corona phase molecular recognition. ACS Sens. 6, 3032–3046 (2021).

    Article  CAS  Google Scholar 

  18. Lew, T. T. S. et al. Real-time detection of wound-induced H2O2 signalling waves in plants with optical nanosensors. Nat. Plants 6, 404–415 (2020).

    Article  CAS  Google Scholar 

  19. Logan, N. et al. Handheld SERS coupled with QuEChERs for the sensitive analysis of multiple pesticides in basmati rice. npj Sci. Food 6, 3 (2022).

    Article  Google Scholar 

  20. Han, D., Yao, J., Quan, Y., Gao, M. & Yang, J. Plasmon-coupled charge transfer in FSZA core-shell microspheres with high SERS activity and pesticide detection. Sci. Rep. 9, 13876 (2019).

    Article  Google Scholar 

  21. Wang, T. et al. Emerging core–shell nanostructures for surface-enhanced Raman scattering (SERS) detection of pesticide residues. Chem. Eng. J. 424, 130323 (2021).

    Article  CAS  Google Scholar 

  22. Sun, Y. et al. Simultaneous SERS detection of illegal food additives rhodamine B and basic orange II based on Au nanorod-incorporated melamine foam. Food Chem. 357, 129741 (2021).

    Article  CAS  Google Scholar 

  23. Wang, C. M., Roy, P. K., Juluri, B. K. & Chattopadhyay, S. A. SERS tattoo for in situ, ex situ, and multiplexed detection of toxic food additives. Sens. Actuators B 261, 218–225 (2018).

    Article  CAS  Google Scholar 

  24. Hassan, M. M., Zareef, M., Xu, Y., Li, H. & Chen, Q. SERS based sensor for mycotoxins detection: challenges and improvements. Food Chem. 344, 128652 (2021).

    Article  CAS  Google Scholar 

  25. Li, J., Yan, H., Tan, X., Lu, Z. & Han, H. Cauliflower-inspired 3D SERS substrate for multiple mycotoxins detection. Anal. Chem. 91, 3885–3892 (2019).

    Article  CAS  Google Scholar 

  26. Kim, S. et al. Feasibility study for detection of turnip yellow mosaic virus (TYMV) infection of Chinese cabbage plants using Raman spectroscopy. Plant Pathol. J. 29, 105–109 (2013).

    Article  CAS  Google Scholar 

  27. Lin, Y.-J., Lin, H.-K. & Lin, Y.-H. Construction of Raman spectroscopic fingerprints for the detection of Fusarium wilt of banana in Taiwan. PLoS ONE 15, e0230330 (2020).

    Article  CAS  Google Scholar 

  28. Zhang, Y. et al. Ultrasensitive detection of plant hormone abscisic acid-based surface-enhanced Raman spectroscopy aptamer sensor. Anal. Bioanal. Chem. 414, 2757–2766 (2022).

    Article  CAS  Google Scholar 

  29. David, M., Serban, A., Radulescu, C., Danet, A. F. & Florescu, M. Bioelectrochemical evaluation of plant extracts and gold nanozyme-based sensors for total antioxidant capacity determination. Bioelectrochemistry 129, 124–134 (2019).

    Article  CAS  Google Scholar 

  30. Gupta, S. et al. Portable Raman leaf-clip sensor for rapid detection of plant stress. Sci. Rep. 10, 20206 (2020).

    Article  CAS  Google Scholar 

  31. Huang, C. H. et al. Early diagnosis and management of nitrogen deficiency in plants utilizing Raman spectroscopy. Front. Plant Sci. 11, 663 (2020).

    Article  Google Scholar 

  32. Altangerel, N. et al. In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy. Proc. Natl Acad. Sci. USA 114, 3393–3396 (2017).

    Article  CAS  Google Scholar 

  33. Chen, H., Wang, Y. & Dong, S. An effective hydrothermal route for the synthesis of multiple PDDA-protected noble-metal nanostructures. Inorg. Chem. 46, 10587–10593 (2007).

    Article  CAS  Google Scholar 

  34. Vaia, R. A. & Giannelis, E. P. Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment. Macromolecules 30, 8000–8009 (1997).

    Article  CAS  Google Scholar 

  35. Tanaka, K., Gilroy, S., Jones, A. M. & Stacey, G. Extracellular ATP signaling in plants. Trends Cell Biol. 20, 601–608 (2010).

    Article  CAS  Google Scholar 

  36. Kim, S. Y., Sivaguru, M. & Stacey, G. Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signaling. Plant Physiol. 142, 984–992 (2006).

    Article  CAS  Google Scholar 

  37. Lv, W. et al. Multi-hydrogen bond assisted SERS detection of adenine based on multifunctional graphene oxide/poly (diallyldimethyl ammonium chloride)/Ag nanocomposites. Talanta 204, 372–378 (2019).

    Article  CAS  Google Scholar 

  38. Dutta, J., Sahu, A. K., Bhadauria, A. S. & Biswal, H. S. Carbon-centered hydrogen bonds in proteins. J. Chem. Inf. Model. 62, 1998–2008 (2022).

    Article  CAS  Google Scholar 

  39. Copeland, K. L. & Tschumper, G. S. Hydrocarbon/water interactions: encouraging energetics and structures from DFT but disconcerting discrepancies for Hessian indices. J. Chem. Theory Comput. 8, 1646–1656 (2012).

    Article  CAS  Google Scholar 

  40. Dark, A., Demidchik, V., Richards, S. L., Shabala, S. & Davies, J. M. Release of extracellular purines from plant roots and effect on ion fluxes. Plant Signal. Behav. 6, 1855–1857 (2011).

    Article  CAS  Google Scholar 

  41. Tálas, E. et al. Surface enhanced Raman spectroscopic (SERS) behavior of phenylpyruvates used in heterogeneous catalytic asymmetric cascade reaction. Spectrochim. Acta A Mol. Biomol. Spectrosc. 260, 119912 (2021).

    Article  Google Scholar 

  42. Lew, T. T. S. et al. Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small 14, e1802086 (2018).

    Article  Google Scholar 

  43. Kwak, S.-Y. et al. A nanobionic light-emitting plant. Nano Lett. 17, 7951–7961 (2017).

    Article  CAS  Google Scholar 

  44. Teale, W. D., Paponov, I. A. & Palme, K. Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7, 847–859 (2006).

    Article  CAS  Google Scholar 

  45. Wittek, F. et al. Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola. Mol. Plant Pathol. 16, 616–622 (2015).

    Article  CAS  Google Scholar 

  46. Chen, T. T., Kuo, C. S., Chou, Y. C. & Liang, N. T. Surface-enhanced Raman scattering of adenosine triphosphate molecules. Langmuir 5, 887–891 (1989).

    Article  CAS  Google Scholar 

  47. Chadha, R., Das, A., Kapoor, S. & Maiti, N. Surface-induced dimerization of 2-thiazoline-2-thiol on silver and gold nanoparticles: a surface enhanced Raman scattering (SERS) and density functional theoretical (DFT) study. J. Mol. Liq. 322, 114536 (2021).

    Article  CAS  Google Scholar 

  48. Pedras, M. S. C. & To, Q. H. Interrogation of biosynthetic pathways of the cruciferous phytoalexins nasturlexins with isotopically labelled compounds. Org. Biomol. Chem. 16, 3625–3638 (2018).

    Article  CAS  Google Scholar 

  49. Herschbach, C. & Rennenberg, H. Influence of glutathione (GSH) on net uptake of sulphate and sulphate transport in tobacco plants. J. Exp. Bot. 45, 1069–1076 (1994).

    Article  CAS  Google Scholar 

  50. Vanacker, H., Carver, T. L. & Foyer, C. H. Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol. 117, 1103–1114 (1998).

    Article  CAS  Google Scholar 

  51. Kuligowski, J. et al. Surface enhanced Raman spectroscopic direct determination of low molecular weight biothiols in umbilical cord whole blood. Analyst 141, 2165–2174 (2016).

    Article  CAS  Google Scholar 

  52. Hao, Q. et al. Isochorismate-based salicylic acid biosynthesis confers basal resistance to Fusarium graminearum in barley. Mol. Plant Pathol. 19, 1995–2010 (2018).

    Article  CAS  Google Scholar 

  53. Goswami, R. S. & Kistler, H. C. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 5, 515–525 (2004).

    Article  CAS  Google Scholar 

  54. Feng, H. et al. Extracellular ATP is involved in the salicylic acid-induced cell death in suspension-cultured tobacco cells. Plant Prod. Sci. 18, 154–160 (2015).

    Article  Google Scholar 

  55. Lefevere, H., Bauters, L. & Gheysen, G. Salicylic acid biosynthesis in plants. Front. Plant Sci. 11, 338 (2020).

    Article  Google Scholar 

  56. Ding, L. et al. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS ONE 6, e19008 (2011).

    Article  CAS  Google Scholar 

  57. Fu, Z. Q. & Dong, X. Systemic acquired resistance: turning local infection into global defense. Annu Rev. Plant Biol. 64, 839–863 (2013).

    Article  CAS  Google Scholar 

  58. Rico, A., Bennett, M. H., Forcat, S., Huang, W. E. & Preston, G. M. Agroinfiltration reduces ABA levels and suppresses Pseudomonas syringae-elicited salicylic acid production in Nicotiana tabacum. PLoS ONE 5, e8977 (2010).

    Article  Google Scholar 

  59. Tsuji, J., Jackson, E. P., Gage, D. A., Hammerschmidt, R. & Somerville, S. C. Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv syringae. Plant Physiol. 98, 1304–1309 (1992).

    Article  CAS  Google Scholar 

  60. Cha, M. G. et al. Effect of alkylamines on morphology control of silver nanoshells for highly enhanced Raman scattering. ACS Appl. Mater. Interfaces 11, 8374–8381 (2019).

    Article  CAS  Google Scholar 

  61. Leslie, J. F. & Summerell, B. A. Fusarium laboratory workshops—a recent history. Mycotoxin Res. 22, 73–74 (2006).

    Article  CAS  Google Scholar 

  62. Sarowar, S. et al. Targeting the pattern-triggered immunity pathway to enhance resistance to Fusarium graminearum. Mol. Plant Pathol. 20, 626–640 (2019).

    Article  CAS  Google Scholar 

  63. Taylor, S. C. et al. The ultimate qPCR experiment: producing publication quality, reproducible data the first time. Trends Biotechnol. 37, 761–774 (2019).

    Article  CAS  Google Scholar 

  64. Gao, J. et al. WRKY transcription factors associated with NPR1-mediated acquired resistance in barley are potential resources to improve wheat resistance to Puccinia triticina. Front. Plant Sci. 9, 1486 (2018).

    Article  Google Scholar 

  65. Manghwar, H. et al. Disease severity, resistance analysis, and expression profiling of pathogenesis-related protein genes after the inoculation of Fusarium equiseti in wheat. Agronomy 11, 2124 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Crop Viruses and Pests Response Industry Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (no. 321107-03), the National Research Foundation of Korea (NRF) grant funded by the Korean government (the Ministry of Science and ICT) (nos. 2021R1C1C1005691, 2020R1A4A1018017 and 2021R1A4A5031762) and the Creative-Pioneering Researchers Program through Seoul National University. We are grateful for the helpful discussion with Y.-S. Lee.

Author information

Authors and Affiliations

Authors

Contributions

S.-Y.K. and D.H.J. conceived the experiments and obtained funding for—and oversaw—the research. W.K.S., Y.S.C. and D.W.S. synthesized and characterized the nanoparticles and performed the sensing experiments. Y.W.H. and M.J.L. assisted with the experiments. K.M., J.S. and H.S. prepared the plant disease models. W.K.S., S.-Y.K. and D.H.J. analysed the data. W.K.S. and S.-Y.K. wrote the initial manuscript, which was edited by S.-Y.K. and D.H.J.

Corresponding authors

Correspondence to Dae Hong Jeong or Seon-Yeong Kwak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Bin Ren, Sebastian Schluecker and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–18, Figs. 1–28, Equations (1)–(18) and Tables 1–4.

Source data

Source Data Fig. 1

SERS spectrum and statistical source.

Source Data Fig. 2

SERS spectrum and false image matrix.

Source Data Fig. 3

SERS spectrum and curve fitting data.

Source Data Fig. 4

SERS spectrum and statistical source.

Source Data Fig. 5

SERS spectrum and statistical source.

Source Data Fig. 6

Statistical source.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, W.K., Choi, Y.S., Han, Y.W. et al. In vivo surface-enhanced Raman scattering nanosensor for the real-time monitoring of multiple stress signalling molecules in plants. Nat. Nanotechnol. 18, 205–216 (2023). https://doi.org/10.1038/s41565-022-01274-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01274-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing