Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase-controllable large-area two-dimensional In2Se3 and ferroelectric heterophase junction

Abstract

Memory transistors based on two-dimensional (2D) ferroelectric semiconductors are intriguing for next-generation in-memory computing. To date, several 2D ferroelectric materials have been unveiled, among which 2D In2Se3 is the most promising, as all the paraelectric (β), ferroelectric (α) and antiferroelectric (β′) phases are found in 2D quintuple layers. However, the large-scale synthesis of 2D In2Se3 films with the desired phase is still absent, and the stability for each phase remains obscure. Here we show the successful growth of centimetre-scale 2D β-In2Se3 film by chemical vapour deposition including distinct centimetre-scale 2D β′-In2Se3 film by an InSe precursor. We also demonstrate that as-grown 2D β′-In2Se3 films on mica substrates can be delaminated or transferred onto flexible or uneven substrates, yielding α-In2Se3 films through a complete phase transition. Thus, a full spectrum of paraelectric, ferroelectric and antiferroelectric 2D films can be readily obtained by means of the correlated polymorphism in 2D In2Se3, enabling 2D memory transistors with high electron mobility, and polarizable β′–α In2Se3 heterophase junctions with improved non-volatile memory performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase-controlled synthesis of large-area 2D In2Se3 films.
Fig. 2: Phase-control mechanisms of 2D In2Se3 films.
Fig. 3: Working mechanism and performances of FE-FET based on 2D In2Se3 films.
Fig. 4: Fabrication and device application of in-plane α–β′ In2Se3 heterophase junctions.

Similar content being viewed by others

Data availability

All relevant data are either supplied in the Article and Supplementary Information, or available from the corresponding authors upon request. Source data are provided with this paper.

Code availability

All relevant codes are either provided in the paper or available from the corresponding authors upon request.

References

  1. Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019).

    Article  CAS  Google Scholar 

  2. Wu, J. B. et al. High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nat. Electron. 3, 466–472 (2020).

    Article  Google Scholar 

  3. Wang, S. et al. Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nat. Commun. 12, 53 (2021).

    Article  CAS  Google Scholar 

  4. Wang, X. W. et al. Van der Waals engineering of ferroelectric heterostructures for long-retention memory. Nat. Commun. 12, 1109 (2021).

    Article  CAS  Google Scholar 

  5. Dai, M. et al. Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors. Nano Lett. 19, 5410–5416 (2019).

    Article  CAS  Google Scholar 

  6. Marega, G. M. et al. Logic-in-memory based on an atomically thin semiconductor. Nature 587, 72–77 (2020).

    Article  Google Scholar 

  7. Ielmini, D. & Wong, H.-S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).

    Article  Google Scholar 

  8. Khan, A. I. et al. The future of ferroelectric field-effect transistor technology. Nat. Electron. 3, 588–597 (2020).

    Article  Google Scholar 

  9. Tong, L. et al. 2D materials–based homogeneous transistor-memory architecture for neuromorphic hardware. Science 373, 1353–1358 (2021).

    Article  CAS  Google Scholar 

  10. Ding, W. J. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017).

    Article  CAS  Google Scholar 

  11. Zhou, Y. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 17, 5508–5513 (2017).

    Article  CAS  Google Scholar 

  12. Xue, F. et al. Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv. Funct. Mater. 28, 1803738 (2018).

    Article  Google Scholar 

  13. Cui, C. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett. 18, 1253–1258 (2018).

    Article  CAS  Google Scholar 

  14. Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).

    Article  CAS  Google Scholar 

  15. Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

    Article  CAS  Google Scholar 

  16. Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 10, 1775 (2019).

    Article  Google Scholar 

  17. Bao, Y. et al. Gate-tunable in-plane ferroelectricity in few-layer SnS. Nano Lett. 19, 5109–5117 (2019).

    Article  CAS  Google Scholar 

  18. Zheng, C. et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv. 4, eaar7720 (2018).

    Article  Google Scholar 

  19. Xu, C. et al. Two-dimensional antiferroelectricity in nanostripe-ordered In2Se3. Phys. Rev. Lett. 125, 047601 (2020).

    Article  CAS  Google Scholar 

  20. Chen, Z. et al. Atomic imaging of electrically switchable striped domains in β′-In2Se3. Adv. Sci. 8, 2100713 (2021).

    Article  CAS  Google Scholar 

  21. Zhang, Z. M. et al. Atomic visualization and switching of ferroelectric order in β-In2Se3 films at the single layer limit. Adv. Mater. 33, 202106951 (2021).

    Google Scholar 

  22. Xu, C. et al. Two-dimensional ferroelasticity in van der Waals β’-In2Se3. Nat. Commun. 12, 3665 (2021).

    Article  CAS  Google Scholar 

  23. Collins, J. L. et al. Electronic band structure of in-plane ferroelectric van der Waals β′-In2Se3. ACS Appl. Electron. Mater 2, 213–219 (2020).

    Article  CAS  Google Scholar 

  24. Han, G. et al. Indium selenides: structural characteristics, synthesis and their thermoelectric performances. Small 10, 2747–2765 (2014).

    Article  CAS  Google Scholar 

  25. Tao, X. & Gu, Y. Crystalline−crystalline phase transformation in two-dimensional In2Se3 thin layers. Nano Lett. 13, 3501–3505 (2013).

    Article  CAS  Google Scholar 

  26. Liu, L. et al. Atomically resolving polymorphs and crystal structures of In2Se3. Chem. Mater. 31, 10143 (2019).

    Article  CAS  Google Scholar 

  27. Balakrishnan, N. et al. Quantum confinement and photoresponsivity of β-In2Se3 nanosheets grown by physical vapour transport. 2D Mater. 3, 025030 (2016).

    Article  Google Scholar 

  28. Rashid, R. et al. Shape-control growth of 2D-In2Se3 with out-of-plane ferroelectricity by chemical vapor deposition. Nanoscale 12, 20189–20201 (2020).

    Article  CAS  Google Scholar 

  29. Van Landuyt, J. et al. Phase transitions in In2Se3 as studied by electron microscopy and electron diffraction. Phys. Stat. Sol. (a) 3, 299–314 (1975).

    Article  Google Scholar 

  30. Lin, M. et al. Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy. J. Am. Chem. Soc. 135, 13274–13277 (2013).

    Article  CAS  Google Scholar 

  31. Balakrishnan, N. et al. Epitaxial growth of-InSe and α, β, and γ-In2Se3 on ε-GaSe. 2D Mater. 5, 035026 (2018).

    Article  Google Scholar 

  32. Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article  CAS  Google Scholar 

  33. Tang, L. et al. Vertical chemical vapor deposition growth of highly uniform 2D transition metal dichalcogenides. ACS Nano 4, 4646–4653 (2020).

    Article  Google Scholar 

  34. Lakin, N. M. et al. The identification of In2O in the gas phase by high resolution electronic spectroscopy. J. Chem. Phys. 107, 4439–4442 (1997).

    Article  CAS  Google Scholar 

  35. Ly, T. H. et al. Edge delamination of monolayer transition metal dichalcogenides. ACS Nano 11, 7534–7541 (2017).

    Article  CAS  Google Scholar 

  36. Huang, L. et al. Mechanical origin of martensite-like structures in two-dimensional ReS2. Commun. Mater. 2, 87 (2021).

    Article  CAS  Google Scholar 

  37. Vilaplana, R. et al. Experimental and theoretical studies on α‑In2Se3 at high pressure. Inorg. Chem. 57, 8241–8252 (2018).

    Article  CAS  Google Scholar 

  38. Li, W., Qian, X. & Li, J. Phase transitions in 2D materials. Nat. Rev. Mater. 6, 829–846 (2021).

    Article  CAS  Google Scholar 

  39. Yang, S. X. et al. Strain engineering of two-dimensional materials: methods, properties, and applications. InfoMat 3, 397–420 (2021).

    Article  Google Scholar 

  40. Zhang, X. et al. Epitaxial growth of few-layer β-In2Se3 thin films by metalorganic chemical vapor deposition. J. Cryst. Growth 533, 125471 (2020).

    Article  CAS  Google Scholar 

  41. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article  CAS  Google Scholar 

  42. Xu, X. L. et al. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2. Science 372, 195–200 (2021).

    Article  CAS  Google Scholar 

  43. Zhou, J. et al. Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett. 15, 6400–6405 (2015).

    Article  CAS  Google Scholar 

  44. Zheng, Z. Q. et al. Self-assembly of the lateral In2Se3/CuInSe2 heterojunction for enhanced photodetection. ACS Appl. Mater. Interfaces 9, 7288–7296 (2017).

    Article  CAS  Google Scholar 

  45. Yuan, S. G. et al. Enhanced piezoelectric response of layered In2Se3/MoS2 nanosheet-based van der Waals heterostructures. ACS Appl. Nano Mater. 3, 11979–11986 (2020).

    Article  CAS  Google Scholar 

  46. Igo, J. et al. Photodefined in-plane heterostructures in two-dimensional In2Se3 nanolayers for ultrathin photodiodes. ACS Appl. Nano Mater. 2, 6774–6782 (2019).

    Article  CAS  Google Scholar 

  47. Barthel, J. Dr. Probe: a software for high-resolution STEM image simulation. Ultramicroscopy 193, 1–11 (2018).

    Article  CAS  Google Scholar 

  48. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  49. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  51. Dion, M. et al. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    Article  CAS  Google Scholar 

  52. Román-Pérez, G. & Soler, J. M. Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys. Rev. Lett. 103, 096102 (2009).

    Article  Google Scholar 

  53. Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 51872248, 51922113, 52173230, 52222218 and 22105162); Hong Kong Research Grant Council Collaborative Research Fund (project no. C5029-18E); the Hong Kong Research Grant Council General Research Fund (project nos. 11300820, 11312022 and 15302419); the City University of Hong Kong (project nos. 9680241 and 9229074); the Hong Kong Polytechnic University (project nos. 1-ZVGH, ZVRP, W147, 1-BE47, ZE0C and ZE2F); and the Shenzhen Science, Technology and Innovation Commission (project no. JCYJ20200109110213442).

Author information

Authors and Affiliations

Authors

Contributions

J.Z., M.Y. and T.H.L. supervised and led the research project. W.H. carried out the synthesis with assistance from C.S.T. W.H. and X.Z. carried out the TEM and Raman characterizations with assistance from F.Z., Y.C., N.W. and L.W.W. K.Y. and M.Y. carried out the DFT calculations and analysis. W.H. carried out the device fabrication and testing with assistance from S.P.L. and K.H.L. T.Y., F.G., W.F.I., J.H. and C.-S.L. carried out the atomic force microscopy and piezoresponse force microscopy characterizations. Q.W. and M.L. carried out the SHG characterizations. All the authors discussed the results and co-wrote the manuscript.

Corresponding authors

Correspondence to Thuc Hue Ly, Ming Yang or Jiong Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Kian Ping Loh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–42 and Tables 1–3.

Source data

Source Data Fig. 1

Source data for Fig 1.

Source Data Fig. 2

Source data for Fig 2.

Source Data Fig. 3

Source data for Fig 3.

Source Data Fig. 4

Source data for Fig 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Zheng, X., Yang, K. et al. Phase-controllable large-area two-dimensional In2Se3 and ferroelectric heterophase junction. Nat. Nanotechnol. 18, 55–63 (2023). https://doi.org/10.1038/s41565-022-01257-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01257-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing