Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Moving forward in the semantic soup of artificial molecular machine taxonomy

Let’s motor through the fog of molecular machine terminology, not only by defining our own words clearly, but by embracing the coexistence of multiple meanings in a rational and structured manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Artificial molecular machine semantics.
Fig. 2: A taxonomy of artificial molecular machines (AMMs).

References

  1. Feringa, B. L. J. Org. Chem. 72, 6635–6652 (2007).

    Article  CAS  Google Scholar 

  2. Feynman, R. P. Plenty of Room at the Bottom (Am. Phys. Soc. 1959); https://calteches.library.caltech.edu/1976/1/1960Bottom.pdf

  3. Aviram, A. & Ratner, M. A. Chem. Phys. Lett. 29, 277–283 (1974).

    Article  CAS  Google Scholar 

  4. Supramolecular Photochemistry Vol. 214 (ed Balzani, V.) 1–479 (NATO ASI Series C: Mathematical and Physical Sciences, 1988); https://link.springer.com/book/10.1007/978-94-009-3979-0

  5. Drexler, K. E. Engines of Creation: The Coming Era of Nanotechnology (Anchor Books, 1986).

  6. Anelli, P. L., Spencer, N. & Stoddart, J. F. J. Am. Chem. Soc. 113, 5131–5133 (1991).

    Article  CAS  Google Scholar 

  7. Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Angew. Chem., Int. Ed. 39, 3348–3391 (2000).

    Article  CAS  Google Scholar 

  8. Kay, E. R., Leigh, D. A. & Zerbetto, F. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  9. Wyman, G. M. & Brode, W. R. J. Am. Chem. Soc. 73, 1487–1493 (1951).

    Article  CAS  Google Scholar 

  10. Brode, W. R., Gould, J. H. & Wyman, G. M. J. Am. Chem. Soc. 74, 4641–4646 (1952).

    Article  CAS  Google Scholar 

  11. Hugel, T. et al. Science 296, 1103–1106 (2002).

    Article  Google Scholar 

  12. Knox, W. E., Auerbach, V. H. & Lin, E. C. C. Physiol. Rev. 36, 164–254 (1956).

    Article  CAS  Google Scholar 

  13. Alberts, B. Cell 92, 291–294 (1998).

    Article  CAS  Google Scholar 

  14. Astumian, R. D. Nat. Nanotechnol. 7, 684–688 (2012).

    Article  CAS  Google Scholar 

  15. Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Chem. Soc. Rev. 41, 19–30 (2012).

    Article  CAS  Google Scholar 

  16. Astumian, R. D. & Bier, M. Phys. Rev. Lett. 72, 1766–1769 (1994).

    Article  CAS  Google Scholar 

  17. Aprahamian, I. ACS Cent. Sci. 6, 347–358 (2020).

    Article  CAS  Google Scholar 

  18. Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines (Wiley, 2016).

  19. McNaught, A. D. &. Wilkinson, A. Compendium of Chemical Terminology 2nd edn (Blackwell Scientific Publications, 1997).

  20. Bustamante, C., Keller, D. & Oster, G. Acc. Chem. Res. 34, 412–420 (2001).

    Article  CAS  Google Scholar 

  21. Feringa, B. L. Acc. Chem. Res. 34, 504–513 (2001).

    Article  CAS  Google Scholar 

  22. Koumura, N., Zijlstra, R. W., van Delden, R. A., Harada, N. & Feringa, B. L. Nature 401, 152–155 (1999).

    Article  CAS  Google Scholar 

  23. Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Nature 424, 174–179 (2003).

    Article  CAS  Google Scholar 

  24. Kassem, S. et al. Chem. Soc. Rev. 46, 2592–2621 (2017).

    Article  CAS  Google Scholar 

  25. Dattler, D. et al. Chem. Rev. 120, 310–433 (2020).

    Article  CAS  Google Scholar 

  26. Feng, Y. et al. J. Am. Chem. Soc. 143, 5569–5591 (2021).

    Article  CAS  Google Scholar 

  27. Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Nat. Nanotechnol. 10, 70–75 (2015).

    Article  CAS  Google Scholar 

  28. Andreoni, L. et al. Energy Fuels 35, 18900–18914 (2021).

    Article  CAS  Google Scholar 

  29. Corra, S. et al. Nat. Nanotechnol. 17, 746–752 (2022).

    Article  CAS  Google Scholar 

  30. Cheng, C. et al. Nat. Nanotechnol. 10, 547–553 (2015).

    Article  CAS  Google Scholar 

  31. Erbas-Cakmak, S. et al. Science 358, 350–353 (2017).

    Article  Google Scholar 

  32. Amano, S., Fielden, S. D. P. & Leigh, D. A. Nature 594, 529–534 (2021).

    Article  CAS  Google Scholar 

  33. Kinbara, K. & Aida, T. Chem. Rev. 105, 1377–1400 (2005).

    Article  CAS  Google Scholar 

  34. Shinkai, S., Nakaji, T., Nishida, Y., Ogawa, T. & Manabe, O. J. Am. Chem. Soc. 102, 5860–5865 (1980).

    Article  CAS  Google Scholar 

  35. Mock, W. L. & Pierpont, J. J. Chem. Soc. Chem. Commun. 21, 1509–1511 (1990).

    Article  Google Scholar 

  36. Feringa, B. L., van Delden, R. A., Koumura, N. & Geertsema, E. M. Chem. Rev. 100, 1789–1816 (2000).

    Article  CAS  Google Scholar 

  37. Russew, M.-M. & Hecht, S. Adv. Mater. 22, 3348–3360 (2010).

    Article  CAS  Google Scholar 

  38. Wickham, S. F. J. et al. Nature Nanotechnol. 6, 166–169 (2011).

    Article  CAS  Google Scholar 

  39. Wu, X. & Gale, P. A. J. Am. Chem. Soc. 138, 16508–16514 (2016).

    Article  CAS  Google Scholar 

  40. Shirai, Y., Osgood, A. J., Zhao, Y., Kelly, K. F. & Tour, J. M. Nano Lett. 5, 2330–2334 (2005).

    Article  CAS  Google Scholar 

  41. Kudernac, T. et al. Nature 479, 208–211 (2011).

    Article  CAS  Google Scholar 

  42. Reuleaux, F. The Kinematics of Machinery: Outlines of a Theory of Machines (MacMillan and Co, 1876).

  43. Steed, J. W. & Atwood, J. L. Supramolecular Chemistry (John Wiley & Sons, 2012).

  44. Sun, L. et al. Chem. Soc. Rev. 43, 7378–7411 (2014).

    Article  CAS  Google Scholar 

  45. Sanvito, S. Chem. Soc. Rev. 40, 3336–3355 (2011).

    Article  CAS  Google Scholar 

  46. Herges, R. Chem. Sci. 11, 9048–9055 (2020).

    Article  CAS  Google Scholar 

  47. Yoshizawa, M., Klosterman, J. K. & Fujita, M. Angew. Chem., Int. Ed. 48, 3418–3438 (2009).

    Article  CAS  Google Scholar 

  48. Lewandowski, B. et al. Science 339, 189–193 (2013).

    Article  CAS  Google Scholar 

  49. Kelly, T. R. & Snapper, M. L. Nature 549, 336–337 (2017).

    Article  CAS  Google Scholar 

  50. Kassem, S. et al. Nature 549, 374–378 (2017).

    Article  CAS  Google Scholar 

  51. van Dijk, L. et al. Nat. Rev. Chem. 2, 0117 (2018).

    Article  Google Scholar 

  52. Biagini, C. et al. Angew. Chem. Int. Ed. 58, 9876–9880 (2019).

    Article  CAS  Google Scholar 

  53. Hayami, S., Holmes, S. M. & Halcrow, M. A. J. Mater. Chem. C 3, 7775–7778 (2015).

    Article  CAS  Google Scholar 

  54. Le Poul, N. & Colasson, B. ChemElectroChem 2, 475–496 (2015).

    Article  Google Scholar 

  55. Leung, K. C.-F. et al. Chem. Asian J. 4, 364–381 (2009).

    Article  CAS  Google Scholar 

  56. Shinkai, S., Ikeda, M., Sugasaki, A. & Takeuchi, M. Acc. Chem. Res. 34, 494–503 (2001).

    Article  CAS  Google Scholar 

  57. Knipe, P. C., Thompson, S. & Hamilton, A. D. Chem. Sci. 6, 1630–1639 (2015).

    Article  CAS  Google Scholar 

  58. Stadler, A.-M. & Ramírez, J. Top. Curr. Chem. 322, 261–289 (2011).

    Article  Google Scholar 

  59. Biagini, C. & Di Stefano, S. Angew. Chem. Int. Ed. Engl. 59, 8344–8354 (2020).

    Article  CAS  Google Scholar 

  60. Ambroggio, X. I. & Kuhlman, B. Curr. Opin. Struct. Biol. 16, 525–530 (2006).

    Article  CAS  Google Scholar 

  61. Berkovic, G., Krongauz, V. & Weiss, V. Chem. Rev. 100, 1741–1754 (2000).

    Article  CAS  Google Scholar 

  62. Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Chem. Rev. 114, 12174–12277 (2014).

    Article  CAS  Google Scholar 

  63. Lehn, J.-M. Angew. Chem., Int. Ed. Engl. 27, 89–112 (1988).

    Article  Google Scholar 

  64. Wang, F., Liu, X. & Willner, I. Angew. Chem., Int. Ed. 54, 1098–1129 (2015).

    Article  CAS  Google Scholar 

  65. Fenske, T., Korth, H.-G., Mohr, A. & Schmuck, C. Chem. Eur. J. 18, 738–755 (2012).

    Article  CAS  Google Scholar 

  66. Iwamura, H. & Mislow, K. Acc. Chem. Res. 21, 175–182 (1988).

    Article  CAS  Google Scholar 

  67. Ashton, P. R. et al. Angew. Chem., Int. Ed. Engl. 103, 1042–1045 (1991).

    Article  Google Scholar 

  68. Okuno, E., Hiraoka, S. & Shionoya, M. Dalton Trans. 39, 4107 (2010).

    Article  CAS  Google Scholar 

  69. Shirai, Y., Morin, J.-F., Sasaki, T., Guerrero, J. M. & Tour, J. M. Chem. Soc. Rev. 35, 1043–1055 (2006).

    Article  CAS  Google Scholar 

  70. Okumura, Y. & Ito, K. Adv. Mater. 13, 485–487 (2001).

    Article  CAS  Google Scholar 

  71. Kelly, T. R. et al. J. Am. Chem. Soc. 116, 3657–3658 (1994).

    Article  CAS  Google Scholar 

  72. Hirose, K., Shiba, Y., Ishibashi, K., Doi, Y. & Tobe, Y. Chem. Eur. J. 14, 3427–3433 (2008).

    Article  CAS  Google Scholar 

  73. Nabeshima, T., Furusawa, H. & Yano, Y. Angew. Chem., Int. Ed. Engl. 33, 1750–1751 (1994).

    Article  Google Scholar 

  74. Shinkai, S. Pure & Appl. Chem. 59, 425–430 (1987).

    Article  CAS  Google Scholar 

  75. Muraoka, T., Kinbara, K., Aida, T. & Aida, T. Nature 440, 512–515 (2006).

    Article  CAS  Google Scholar 

  76. Shin, J.-S. & Pierce, N. A. J. Am. Chem. Soc. 126, 10834–10835 (2004).

    Article  CAS  Google Scholar 

  77. Delius, von,M., Geertsema, E. & Leigh, D. A. Nature Chem. 2, 96–101 (2010).

    Article  Google Scholar 

  78. Leigh, D. A., Lewandowska, U., Lewandowski, B. & Wilson, M. R. Top. Curr. Chem. 354, 111–138 (2014).

    Article  CAS  Google Scholar 

  79. Qing, Y., Ionescu, S. A., Pulcu, G. S. & Bayley, H. Science 361, 908–912 (2018).

    Article  CAS  Google Scholar 

  80. García-López, V. et al. Nature 548, 567–572 (2017).

    Article  Google Scholar 

  81. Kassem, S., Lee, A. T. L., Leigh, D. A., Markevicius, A. & Solà, J. Nat. Chem. 8, 138–143 (2015).

    Article  Google Scholar 

  82. Chen, J., Wezenberg, S. J. & Feringa, B. L. Chem. Commun. 52, 6765–6768 (2016).

    Article  CAS  Google Scholar 

  83. De Bo, G. et al. Nat. Nanotechnol. 49, 1–6 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carson J. Bruns.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruns, C.J. Moving forward in the semantic soup of artificial molecular machine taxonomy. Nat. Nanotechnol. 17, 1231–1234 (2022). https://doi.org/10.1038/s41565-022-01247-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01247-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing