Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A room-temperature polarization-sensitive CMOS terahertz camera based on quantum-dot-enhanced terahertz-to-visible photon upconversion

Abstract

Detection of terahertz (THz) radiation has many potential applications, but presently available detectors are limited in many aspects of their performance, including sensitivity, speed, bandwidth and operating temperature. Most do not allow the characterization of THz polarization states. Recent observation of THz-driven luminescence in quantum dots offers a possible detection mechanism via field-driven interdot charge transfer. We demonstrate a room-temperature complementary metal–oxide–semiconductor THz camera and polarimeter based on quantum-dot-enhanced THz-to-visible upconversion mechanism with optimized luminophore geometries and fabrication designs. Besides broadband and fast responses, the nanoslit-based sensor can detect THz pulses with peak fields as low as 10 kV cm–1. A related coaxial nanoaperture-type device shows a to-date-unexplored capability to simultaneously record the THz polarization state and field strength with similar sensitivity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental scheme of polarization-sensitive THz imaging.
Fig. 2: THz-induced luminescence of QDs on FESs with different gap sizes.
Fig. 3: THz-induced luminescence with different luminescent materials.
Fig. 4: Simultaneous imaging of THz field strengths and polarimetry with a coaxial qTV.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.

References

  1. Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology. Nat. Mater. 1, 26–33 (2002).

    Article  CAS  Google Scholar 

  2. Rutz, F. et al. Terahertz quality control of polymeric products. Int. J. Infrared Milli. Waves 27, 547–556 (2006).

    Article  CAS  Google Scholar 

  3. Duling, I. & Zimdars, D. Revealing hidden defects. Nat. Photon. 3, 630–632 (2009).

    Article  CAS  Google Scholar 

  4. Ding, S.-H., Li, Q., Yao, R. & Wang, Q. High-resolution terahertz reflective imaging and image restoration. Appl. Opt. 49, 6834–6839 (2010).

    Article  Google Scholar 

  5. Liu, J., Dai, J., Chin, S. L. & Zhang, X.-C. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nat. Photon. 4, 627–631 (2010).

    Article  CAS  Google Scholar 

  6. Liu, H.-B., Chen, Y., Bastiaans, G. J. & Zhang, X.-C. Detection and identification of explosive RDX by THz diffuse reflection spectroscopy. Opt. Express 14, 415–423 (2006).

    Article  CAS  Google Scholar 

  7. Ma, J. et al. Security and eavesdropping in terahertz wireless links. Nature 563, 89–93 (2018).

    Article  CAS  Google Scholar 

  8. Wei, J. et al. Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nat. Nanotechnol. 3, 496–500 (2008).

    Article  CAS  Google Scholar 

  9. Kulesa, C. Terahertz spectroscopy for astronomy: from comets to cosmology. IEEE Trans. THz Sci. Technol. 1, 232–240 (2011).

    Article  CAS  Google Scholar 

  10. Sizov, F. & Rogalski, A. THz detectors. Prog. Quantum. Electron. 34, 278 – 347 (2010).

    Article  Google Scholar 

  11. Lewis, R. A. A review of terahertz detectors. J. Phys. D: Appl. Phys. 52, 433001 (2019).

    Article  CAS  Google Scholar 

  12. Wu, Q. & Zhang, X.-C. Design and characterization of traveling-wave electrooptic terahertz sensors. IEEE J. Sel. Topics Quantum Electron. 2, 693–700 (1996).

    Article  CAS  Google Scholar 

  13. Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865–871 (2012).

    Article  CAS  Google Scholar 

  14. Auton, G. et al. Terahertz detection and imaging using graphene ballistic rectifiers. Nano Lett. 17, 7015–7020 (2017).

    Article  CAS  Google Scholar 

  15. Castilla, S. et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction. Nano Lett. 19, 2765–2773 (2019).

    Article  CAS  Google Scholar 

  16. Chen, W. et al. Continuous-wave frequency upconversion with a molecular optomechanical nanocavity. Science 374, 1264–1267 (2021).

    Article  CAS  Google Scholar 

  17. Xomalis, A. et al. Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas. Science 374, 1268–1271 (2021).

    Article  CAS  Google Scholar 

  18. Peng, K. et al. Three-dimensional cross-nanowire networks recover full terahertz state. Science 368, 510–513 (2020).

    Article  CAS  Google Scholar 

  19. Tyo, J. S., Goldstein, D. L., Chenault, D. B. & Shaw, J. A. Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 45, 5453–5469 (2006).

    Article  Google Scholar 

  20. Costley, A. E., Hursey, K. H., Neill, G. F. & Ward, J. M. Free-standing fine-wire grids: their manufacture, performance, and use at millimeter and submillimeter wavelengths. J. Opt. Soc. Am. 67, 979–981 (1977).

    Article  CAS  Google Scholar 

  21. Ren, L. et al. Carbon nanotube terahertz polarizer. Nano Lett. 9, 2610–2613 (2009).

    Article  CAS  Google Scholar 

  22. Mosley, C. D. W., Failla, M., Prabhakaran, D. & Lloyd-Hughes, J. Terahertz spectroscopy of anisotropic materials using beams with rotatable polarization. Sci. Rep. 7, 12337 (2017).

    Article  CAS  Google Scholar 

  23. Choi, W. J. et al. Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators. Nat. Mater. 18, 820–826 (2019).

    Article  CAS  Google Scholar 

  24. Yasumatsu, N. & Watanabe, S. T-ray topography by time-domain polarimetry. Opt. Lett. 37, 2706–2708 (2012).

    Article  Google Scholar 

  25. Wood, V. et al. Electroluminescence from nanoscale materials via field-driven ionization. Nano Lett. 11, 2927–2932 (2011).

    Article  CAS  Google Scholar 

  26. Pein, B. C. et al. Terahertz-driven luminescence and colossal Stark effect in CdSe–CdS colloidal quantum dots. Nano Lett. 17, 5375–5380 (2017).

    Article  CAS  Google Scholar 

  27. Chen, X. et al. Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves. Nat. Commun. 4, 2361 (2013).

    Article  Google Scholar 

  28. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  CAS  Google Scholar 

  29. Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).

    Article  CAS  Google Scholar 

  30. Kabra, D., Song, M. H., Wenger, B., Friend, R. H. & Snaith, H. J. High efficiency composite metal oxide-polymer electroluminescent devices: a morphological and material based investigation. Adv. Mater. 20, 3447–3452 (2008).

    Article  CAS  Google Scholar 

  31. Liberal, I. & Engheta, N. The rise of near-zero-index technologies. Science 358, 1540–1541 (2017).

    Article  CAS  Google Scholar 

  32. Yoo, D. et al. Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities. Nat. Photon. 15, 125–130 (2021).

    Article  CAS  Google Scholar 

  33. Gao, W. et al. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures. Nano Lett. 14, 1242–1248 (2014).

    Article  CAS  Google Scholar 

  34. Yoo, D. et al. High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography. Nano Lett. 16, 2040–2046 (2016).

    Article  CAS  Google Scholar 

  35. Antonucci, R. R. J. & Miller, J. S. Spectropolarimetry and the nature of NGC 1068. Astrophys. J. 297, 621–632 (1985).

    Article  CAS  Google Scholar 

  36. Nguyen, N., Peraire, J. & Cockburn, B. Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230, 7151–7175 (2011).

    Article  Google Scholar 

  37. Vidal-Codina, F., Nguyen, N. & Peraire, J. Computing parametrized solutions for plasmonic nanogap structures. J. Comput. Phys. 366, 89–106 (2018).

    Article  Google Scholar 

  38. Vidal-Codina, F., Nguyen, N., Oh, S.-H. & Peraire, J. A hybridizable discontinuous Galerkin method for computing nonlocal electromagnetic effects in three-dimensional metallic nanostructures. J. Comput. Phys. 355, 548–565 (2018).

    Article  Google Scholar 

  39. Vidal-Codina, F., Nguyen, N.-C., Ciraci, C., Oh, S.-H. & Peraire, J. A nested hybridizable discontinuous Galerkin method for computing second-harmonic generation in three-dimensional metallic nanostructures. J. Comput. Phys. 366, 89–106 (2018).

    Article  CAS  Google Scholar 

  40. Vidal-Codina, F. et al. Terahertz and infrared nonlocality and field saturation in extreme-scale nanoslits. Opt. Express 28, 8701–8715 (2020).

    Article  Google Scholar 

  41. Berenger, J.-P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994).

    Article  Google Scholar 

  42. Sanjuan, F. & Tocho, J. O. Optical properties of silicon, sapphire, silica and glass in the terahertz range. In Latin America Optics and Photonics Conference LT4C.1 (Optical Society of America, 2012).

  43. Ordal, M. A. et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 22, 1099–1119 (1983).

    Article  CAS  Google Scholar 

  44. Carbone, L. et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 7, 2942–2950 (2007).

    Article  CAS  Google Scholar 

  45. Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).

    Article  CAS  Google Scholar 

  46. Hebling, J., Yeh, K.-L., Hoffmann, M. C., Bartal, B. & Nelson, K. A. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. J. Opt. Soc. Am. B 25, B6–B19 (2008).

    Article  CAS  Google Scholar 

  47. Wu, Q. & Zhang, X. Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett. 67, 3523–3525 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.S., H.U., M.G.B. and K.A.N. acknowledge support from the US Army Research Lab (ARL) and the US Army Research Office through the Institute for Soldier Nanotechnologies, under Cooperative Agreement number W911-NF-18-2-0048. J.S. and K.A.N. also acknowledge support from the Samsung Global Research Outreach (GRO) Program. D.Y. and S.-H.O. acknowledge support from the Samsung GRO Program, the Sanford P. Bordeau Chair at the University of Minnesota and the McKnight Foundation. F.V.-C. and J.P. acknowledge support from the AFOSR grant no. FA9550-19-1-0240. J.H. and V.B. acknowledge support from the Center for Energy Efficient Electronics Science (NSF award 0939514). A.M.L acknowledges support from the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Contributions

K.A.N. and S.-H.O. conceived the idea. J.S. performed the sensitivity characterizations under the supervision of K.A.N. D.Y. fabricated the nanoslits and nanocoaxes under the supervision of S.-H.O. F.V.-C. and N.-C.N. performed the field enhancement simulations under the supervision of J.P. C.-W.B. and K.-S.C. synthesized the luminophores. J.S. analysed the experimental data with crucial inputs from D.Y., H.U., A.M.L., M.G.B., S.-H.O. and K.A.N. J.H. synthesized the microslits under the supervision of V.B. J.S., D.Y., S.-H.O. and K.A.N. wrote the manuscript with inputs from all the authors.

Corresponding authors

Correspondence to Sang-Hyun Oh or Keith A. Nelson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Michael Ruggiero and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Figs. 1–9 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Yoo, D., Vidal-Codina, F. et al. A room-temperature polarization-sensitive CMOS terahertz camera based on quantum-dot-enhanced terahertz-to-visible photon upconversion. Nat. Nanotechnol. 17, 1288–1293 (2022). https://doi.org/10.1038/s41565-022-01243-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01243-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing