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Hierarchically self-assembled homochiral 
helical microtoroids

Cong Du1,3, Zujian Li1,3, Xuefeng Zhu    1, Guanghui Ouyang    1  and 
Minghua Liu    1,2 

Fabricating microscale helical structures from small molecules remains 
challenging due to the disfavoured torsion energy of twisted architectures 
and elusory chirality control at different hierarchical levels of assemblies. 
Here we report a combined solution–interface-directed assembly strategy 
for the formation of hierarchically self-assembled helical microtoroids 
with micrometre-scale lengths. A drop-evaporation assembly protocol on a 
solid substrate from pre-assembled intermediate colloids of enantiomeric 
binaphthalene bisurea compounds leads to microtoroids with preferred 
helicity, which depends on the molecular chirality of the starting 
enantiomers. Collective variable-temperature spectroscopic analyses, 
electron microscopy characterizations and theoretical simulations reveal 
a mechanism that simultaneously induces aggregation and cyclization 
to impart a favourable handedness to the final microtoroidal structures. 
We then use monodispersed luminescent helical toroids as chiral 
light-harvesting antenna and show excellent Förster resonance energy 
transfer ability to a co-hosted chiral acceptor dye, leading to unique 
circularly polarized luminescence. Our results shed light on the potential 
of the combined solution–interface-directed self-assembly approach in 
directing hierarchical chirality control and may advance the prospect of 
chiral superstructures at a higher length scale.

Chirality is a universal phenomenon in nature and significantly affects 
the properties of both biomaterials and artificial materials1–4. The topol-
ogy of hierarchical chiral architectures5–8, together with their chirality 
control across length scales9, plays a vital role in defining their diverse 
functionalities. Compared with widely reported chiral superstructures 
such as fibre bundles, tubes and helices10–13, self-assembled chiral toroi-
dal structures remain largely unexplored due to their conformational 
constraints regarding circularity and helicity14. However, in biological 
systems, a hierarchical self-assembly mechanism involving the precise 
arrangement of building blocks and masterly control of chirality plays 
an important role in the formation of chiral circular bioarchitectures 
from nanoscales to macroscales. For example, the crystal structure 
of the light-harvesting antenna complex (LH2) shows that the protein 

subunits enclosing the pigment molecules unidirectionally assemble 
into helical ring-shaped topology, which contributes to exciton delo-
calization within the toroidal π-aggregates and enhances the energy 
transfer efficiency15. Another exquisite natural ring structure with 
larger size is the hierarchically organized coccolith skeletons wherein 
nanometre-sized calcium carbonate skeletal plates are helically ori-
ented into micrometre toroids16. Inspired by these amazing naturally 
occurring helical toroids in living systems, the preparation of helical 
ring architectures has gained increasing interest among chemistry, 
materials and biology communities17–23. Despite the fact that the accu-
rate asymmetric synthesis of homochiral molecular macrocycles or 
toroids has earned credit24, the development of their chiral supramo-
lecular analogues at a higher level of hierarchy (such as micrometre 
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a transparent supersaturated solution. The subsequent cooling of the 
BU hot solution to room temperature at a given speed (5 K min−1) was 
expected to yield intermediate molecular aggregates, which were 
then immediately transferred onto a two-dimensional surface via a 
syringe to allow their possible interfacial re-organization on ambient 
evaporation (Fig. 1b). Self-assembly conditions including solvent type, 
cooling rate and concentration were found to affect the morpholo-
gies of interfacial assemblies. Various solvents from non-polar CCl4 
to polar dimethyl sulfoxide and protic solvents, namely, methanol 
(MeOH) and ethanol, were screened to evaluate the solvent effect 
(Supplementary Figs. 7 and 8). Micrometre-sized interfacial toroidal 
structures were successfully observed for MeOH, and therefore, this 
solvent was selected for further experimental optimizations. A proper 
concentration (4 mM in MeOH) was critical to form adequate interfacial 
BU microtoroids (Supplementary Fig. 9). The cooling rate is another 
important parameter in defining the supramolecular morphology  
as well as its functions36. Both slow cooling (1 K min−1) and fast cool-
ing (10 K min−1) failed to yield helical microtoroids with satisfactory  
dispersity (Supplementary Figs. 10 and 11). The length of the alkyl 
chains and urea hydrogen bonds of the BU molecules also played 
important roles in controlling the interfacial self-assembled struc-
tures. Semi-spherical or spherical microstructures were obtained for 
BU derivatives with shortened alkyl chains ((S)-BU-C4, (S)-BU-C7 and 
(S)-BU-C12; chemical structures shown in Supplementary Scheme 
2), whereas microdisc structures were formed for a BU derivative  
with methyl-protected urea groups ((S)-BU-Me; chemical structure 
shown in Supplementary Scheme 2), demonstrating the indispensable  
and collaborative roles of each subcomponent in BU molecules  
(Supplementary Fig. 13).

Under optimized conditions (4 mM BU in MeOH, cooling from 
343 to 293 K at the speed of 5 K min−1), uniform-sized and large-scale 
microtoroids were successfully obtained on a silica wafer substrate, as 
observed from both scanning electron microscopy (SEM) and fluores-
cence microscopy images (Fig. 1c–e). A magnified SEM image of (S)-BU 
microtoroid clearly showed that the toroidal-shaped superstructure 
consisted of several dozens of clockwise-oriented nanorod-like subu-
nits, showing left-handed helicity (Fig. 1d), which was further supported 
by transmission electron microscopy (TEM) and atomic force micro-
scopy images (Supplementary Fig. 14). The helicity preference of these 
microtoroids followed the molecular chirality of BU molecules, that is, 
M-helical and P-helical microtoroids could be successfully obtained 
from (S)-BU and (R)-BU enantiomers, respectively (Fig. 1c,f and Supple-
mentary Fig. 15). In sharp contrast, racemic BU (rac-BU) molecules only 
resulted in the formation of achiral microplates (Fig. 1i), indicating 
a chiral control process of interfacial re-assembly. A morphological 
statistical analysis gave an average outer diameter of 3.3 ± 0.2 μm and a 
toroidal width of 1.4 ± 0.2 μm (Fig. 1j and Supplementary Figs. 16 and 17).  
The average length of the helically arranged nanorod-like subunits 
along the microtoroidal surface was about 420 ± 73 nm (Fig. 1k and 
Supplementary Figs. 18 and 19). These helical microtoroidal structures 
could be prepared on varied substrates including silica wafer, glass, 
mica and quartz plate with similar outer diameters and subunit length 
(Supplementary Fig. 20), thus representing a universal approach for 
the preparation of helicity-controlled helical microtoroids.

Characterization of molecular aggregates in 
solution
The formation of molecular aggregates via a solution-cooling pro-
tocol was verified by a series of experiments. The cryogenic capture 
of the intermediate aggregates in cooled BU MeOH solution (293 K) 
gave both discrete nanoparticles (diameter, ~45 nm) and predominant 
nanoparticle-fused aggregates (length, ~220 nm), as observed from 
the cryo-TEM image (Fig. 2a), indicating the colloidal nature of the 
supersaturated BU solution after the cooling protocol37. An obvious 
Tyndall effect (Fig. 2b, inset; Supplementary Fig. 10) and dynamic light 

scale) through a self-assembly approach is still in its infancy25, mainly 
due to the lack of efficient cyclization strategies and remaining chal-
lenges in the precise chirality control at higher length scales9,26.

Interfacial self-assembly has proven its capabilities of developing 
unique topological structures and reconfigurable materials across sev-
eral length scales owing to interfacial tension and increased morpho-
logical stability on substrates27–31. Interestingly, molecular chirality has 
also been found to profoundly affect the nanostructures of interfacial 
assemblies of amphiphilic surfactants and rod-like viruses by the chiral 
control of interfacial tension32. Although advances have been achieved 
in the preparation of ring structures by the self-organization of linear 
polymers, discrete organic molecules and nanoparticles on solvent 
evaporation on a surface33,34, most of these interfacial assemblies are at 
the nanoscale and are prevailingly achiral or mixtures of conglomerates 
owing to insufficient hierarchical chirality control. Encouraged by our 
previous progress in the aqueous preparation of helicity-controlled 
Möbius strips with diameters of 0.5–2.5 μm (ref. 35), we conjecture that 
the re-assembly of pre-formed nanoscale molecular aggregates on a 
two-dimensional surface might increase the possibility of their circular 
stacking due to the reduced degree of freedom and chiral control of 
interfacial tension, leading to the formation of helical toroids with a 
larger length scale and favourable size dispersity.

Here we report a combined solution–interface-directed assembly 
approach to hierarchically construct micrometre-scale helical toroids 
from amphiphilic binaphthalene bisurea (BU) enantiomers on varied 
substrates. Morphological analyses reveal that these microtoroidal 
architectures are composed of helically arranged nanorod-like sub-
units with an average length of about 420 nm, originating from the 
interfacial fusion and re-assembly of intermediate solution aggregates. 
Our molecular dynamics (MD) simulation studies indicate that the 
pre-assembled molecular aggregates could act as new building blocks 
to further helically stack on top of each other, leading to the formation 
of helical microtoroids. The toroidal organization of intermediate 
aggregates affects the overall chiroptical properties of interfacial 
assemblies, supporting a microscopic-chirality-regulated structure–
property relationship. We then show that the helical microtoroid can 
be used as a template to accommodate acceptor dye molecules. An 
efficient excitation energy transfer from donor BU to the chiral accep-
tor is thus achieved, representing a proof-of-concept light-harvesting 
antenna with both chirality and circularly polarized light features.

Preparation of homochiral helical microtoroids
To construct helical microtoroids, a combined solution–
interface-directed self-assembly strategy is proposed, which involves 
the stepwise self-assembly of the target compounds into molecular 
aggregates in solution and subsequent interfacial organization into 
microtoroids. For this purpose, amphiphilic binaphthalene BU enanti-
omers (Fig. 1a and Supplementary Scheme 1) comprising a luminescent 
π-chromophore, two urea moieties and two long alkyl chains were 
synthesized and fully characterized. These structural subcomponents 
encode chiroptical properties and unique self-assembly capabilities 
into the BU molecules, which were indirectly elaborated by a series 
of reference BU derivatives with alkyl chains of different lengths and 
methyl-substituted urea groups (Supplementary Scheme 2). BU was 
first investigated by two-dimensional correlation spectroscopy nuclear 
magnetic resonance (COSY-NMR) and selective 1D rotating-frame 
Overhauser effect spectroscopy (ROESY) NMR spectroscopy, and 
well-resolved proton signals on naphthalene were assigned (Supple-
mentary Figs. 1 and 2). Geometry-optimized structure of (S)-BU by 
density functional theory (DFT) computation supported the existence 
of intramolecular hydrogen bonds between two urea groups, leading to 
a folded conformation of the two long alkyl chains and a binaphthalene 
dihedral angle of about 74.6° (Supplementary Figs. 3 and 4).

In a typical experimental protocol, the BU samples were dispersed 
in selected solvents, and the mixture was then heated to 343 K to afford 
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scattering (DLS) data at 293 K also clearly supported the formation of 
particles with sizes of about 228 ± 88 nm (Fig. 2b), which was in the 
same length scale as the cryogenic aggregates but obviously shorter 
than the microtoroid subunits (~420 nm; Fig. 1k and Supplementary 
Fig. 20d,h,l). The fast spin coating of the BU intermediate colloids on 
a silica wafer substrate also afforded similar microtoroids with outer 
diameters of about 3.5 μm and periphery subunits with a length of 
about 399 ± 43 nm (Fig. 2e and Supplementary Figs. 21 and 22). These 
data demonstrated that the nanoscale aggregates underwent further 
morphological evolution and hierarchical self-assembly when they  
were transferred to the substrate. A magnified SEM image of an 
interfacial microtoroid clearly showed the tendency of nanoparticle 

fusion within a periphery subunit (Fig. 1d, inset). The cryo-TEM mor-
phology observation indicated that the BU solution aggregates were 
affected by solvent types and different cooling speeds (Supplementary  
Figs. 23 and 24).

A spectroscopic analysis was conducted to obtain insights into 
the solution-phase aggregation process. Variable-temperature NMR 
measurements of the BU solution (4 mM in CD3OD) provided the 
in situ aggregation information. On cooling from 343 to 293 K, the 
chemical-shift range of aromatic protons on naphthalene became 
broader with ‘proton a’ and ‘proton f’ (Supplementary Fig. 26) moving 
downfield and upfield, respectively, demonstrating that the naphtha-
lene rings were under the influence of both shielding and deshielding 
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Fig. 1 | Schematic of forming helical microtoroids and morphological 
analysis. a, Chemical structures of binaphthalene BU enantiomers (S)-BU and 
(R)-BU, showing an intramolecular hydrogen bond between two urea groups.  
b, Illustration of the stepwise solution self-assembly of BU in supersaturated 
MeOH (4 mM) and interfacial re-assembly of the aggregates by natural 
evaporation on a surface. Expansion scale bar is 100 nm. c–e, SEM images (c,d) 
and fluorescence microscopy image (e) of (S)-BU interfacial assemblies on a silica 

wafer surface. f,g, SEM images of (R)-BU interfacial assemblies. h, Illustration 
of morphological parameters (diameter, width and subunit length) of an (S)-BU 
microtoroid. i, SEM image of interfacial assemblies from rac-BU. j,k, Statistical 
analysis of toroidal width, diameter and subunit length. The cyan arrows in  
c, d, f and g highlight the helicity direction of microtoroids. Here M and P 
represent left and right handedness, respectively.
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effects, which might originate from the alteration of binaphthalene 
dihedral angle and π–π-stacking interactions38. By using an internal 
standard method, we were able to evaluate the change in aromatic 
proton integrals during the aggregation process. The first stage of 
cooling from 343 to 303 K gave rise to slightly decreased integrals 
of ‘proton a’ (Fig. 2c), which demonstrated that NMR-recordable BU 
monomers or oligomers were the major species in this temperature 
range. Subsequent cooling from 303 to 293 K induced an obvious 
decrease in the NMR integrals owing to the formation of NMR-invisible 
large aggregates, which was in accordance with the cryo-TEM and DLS 
data. The following aging treatment of the aggregates at 293 K caused 
a continuous NMR integral decrease owing to further aggregation and 
formation of precipitates. SEM micrographs showed that these precipi-
tates were micrometre-sized flower-like spheres consisting of several 
hundreds of nanoscale subunits with length of 419 ± 72 nm (Fig. 2f and 
Supplementary Fig. 25). Variable-temperature Fourier-transform infra-
red (FT-IR) spectroscopy of the BU solution showed that the stretch-
ing vibration band of the carbonyl group (ν-C=O at 1,612 cm−1) at a 
higher temperature (343 K) gradually split into two peaks (1,616 and 
1,603 cm−1) on cooling to 293 K, and the bending vibration peak of the 
N–H bond (δ-N–H, 1,283 cm−1) was also divided into two peaks centred at  
1,271 and 1,251 cm−1 (Fig. 2d). These splitting peaks suggested the  
formation of both intra- and intermolecular C=O···H–N hydrogen  
bonds within the solution aggregates39,40. All these experimental results 
unambiguously supported the formation of nanoscale molecular 
aggregates on the controlled cooling protocol of a supersaturated 
BU hot solution.

Packing modes and proposed self-assembly 
mechanism
A comparison of the spectroscopic characteristics of BU mono-
mers (BUmono), solution aggregates (BUagg), interfacial microtoroids  
(BUtoroid) and single-crystal structures (BUcrystal) could bring useful infor-
mation for the hierarchical self-assembly mechanism41. Compared 
with (S)-BUmono at different concentrations (Fig. 3a and Supplementary 
Fig. 27), the absorption maximum of the 1La transition for (S)-BUtoroid 
was redshifted from 284 to 300 nm and the intensity of the absorp-
tion band above 300 nm was amplified (Fig. 3a), demonstrating an 
effective chromophore-packing arrangement within the BU interfacial 
toroids. The emission maximum of (S)-BUtoroid also showed a slight 
bathochromic shift (Fig. 3b). The chiroptical properties of hierarchi-
cal structures were studied by circular dichroism (CD) and circularly 
polarized luminescence (CPL) spectra. The 1Bb and 1La transitions of 
BUmono showed opposite Cotton effects due to their perpendicular 
orientations (Fig. 3c)42, which was also confirmed by time-dependent 
DFT-calculated CD spectrum (Supplementary Fig. 5). Two enantiom-
ers, namely, (S)-BUmono and (R)-BUmono, exhibited mirror-imaged Cotton 
effects, as expected (Fig. 3c). On formation of the solution aggregates, 
the Cotton effect of (S)-BUagg at the 1La transition (centred near 284 nm) 
showed a negative sign, which was in agreement with (S)-BUmono. In 
sharp contrast, (S)-BUtoroid gave rise to a positive Cotton effect (Fig. 3d,  
blue dashed line; Supplementary Fig. 28b). All the CD spectra calcu-
lated using time-dependent density functional theory for different 
dimeric (S)-BUmomo species showed negative Cotton effects at the 1La 
transition (Supplementary Fig. 29). Therefore, the overall positive 
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chiroptical signals of interfacial toroids originated more from the 
micrometre-sized chiral structures rather than the contribution 
from monomeric and aggregated species. This conclusion was further 
unambiguously supported by the CPL spectra because both BUmono and 
BUagg showed no obvious CPL signals, whereas BUtoroid gave an intense  
CPL emission with luminescent dissymmetry factors (|glum|) of 2 × 10−3 
(Fig. 3e), which was due to an amplification of structural chirality within 
the toroidal assemblies43. Therefore, the toroidal organization of  
solution aggregates on a surface played a critical role in defining the 
expression of the overall chiroptical properties.

X-ray diffraction (XRD) pattern and infrared spectrum could pro-
vide structural information for molecular packing within the assem-
blies. The XRD pattern of BU microtoroids showed regular diffraction 
peaks at 2θ values of 2.24°, 4.50°, 6.70° and 8.99° (Fig. 3f). The diffrac-
tion peaks calculated from the Bragg’s equation gave d-spacing values 
of 3.94 nm, 1.96 nm, 1.32 nm and 0.98 nm, which should correspond 
to the (001), (002), (003) and (004) diffractions, respectively (Fig. 3f,  
blue line), supporting a multilamellar packing mode. In the micro-
toroid, the CH2-stretching bands appeared at 2,922 cm−1 and 2,851 cm−1, 
thus suggesting the contributions of a gauche conformation of alkyl 
chains (Supplementary Fig. 30, blue line)44. The single-crystal struc-
ture provided direct information for the molecular packing mode in 
the solid state. We successfully obtained the single crystal of (S)-BU 
by a slow evaporation approach in ethyl acetate/dimethyl sulfoxide 
co-solvents. The single-crystal XRD data of (S)-BU revealed a triclinic 
packing diagram with a P1 chiral space group feature (Fig. 4a and Sup-
plementary Table 1). The intramolecular hydrogen bonds between the 
two urea groups were retained in the crystal network (Fig. 4b; H···O 
distances, 2.2 Å and 2.5 Å). A further extension along both y and z axes 
was dominated by CH–π interactions (H···C distance, 2.7 Å and 3.0 Å) 
among neighbouring naphthalene moieties, giving a well-defined 

multilamellar structure (Fig. 4a; bilayer length, 3.89 nm). The XRD 
patterns of the single-crystal and microtoroidal assemblies of (S)-BU 
showed similar diffraction peaks, therefore proving that BU molecules 
in the microtoroids adopted similar packing modes to those in the solid 
structure. However, the diffraction peaks of (S)-BUtoroid were obviously 
broader than those of the single crystal, indicating that the molecular 
ordering within (S)-BUtoroid was not as well defined as that in the crystal, 
most probably due to the involvement of intermolecular hydrogen 
bonds, which was in accordance with the variable-temperature FT-IR 
spectroscopy results.

Atomistic MD simulation using the general AMBER force 
field (gaff2) was performed to provide insights into the possible 
self-assembly mechanism. The initial geometrical structure of (S)-BU 
was extracted from the single-crystal and 5 × 10 × 3 pairs of (S)-BU 
molecules were generated as one block of cluster (Fig. 4c and Supple-
mentary Fig. 6), which was then solvated in MeOH and equilibrated 
through MD simulations for 40 ns after thousands of steps of energy 
minimization. The equilibrium configuration showed that the bilayer 
packing within the block almost remained, which was in agreement 
with the XRD pattern. Possible intercluster stacking was also simulated 
by placing the equilibrated cluster monomer at a distance of ~1.5 nm 
along the x axis before solvation in the MeOH solvent (Fig. 4d). The 
systems for the cluster dimer and trimer containing 600 and 900 (S)-BU 
molecules were solvated in more than 20,000 and 30,000 MeOH  
molecules with box sizes of 13.72 nm and 19.72 nm, respectively. After 
the energy minimization of whole systems, 40 ns MD simulations 
under the constant pressure/temperature (NPT) ensemble were per-
formed. The cluster dimer showed relative translation along the y axis, 
whereas the cluster trimer had an obvious rotation tendency (rotation 
angle, about 8°) on cluster stacking on top of each other, indicating the  
preference of circular stacking (Fig. 4e).
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absorption (Abs) (a) and fluorescence (FL) (b) spectra of (S)-BUmono and 
(S)-BUtoroid. The blue arrow indicates the absorption maximum redshift of 
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Based on these experimental and computational data, we propose 
a possible aggregation–cyclization mechanism for the formation 
of interfacial microtoroids. The BU molecules in a supersaturated 
solution first form discrete and fused nanoparticles (aggregates) on 
cooling treatment, as supported by the cryo-TEM characterization data 
through synergistic CH–π interaction, H-bond and alkyl-chain packing. 
When these aggregates are placed on a substrate, solvent evaporation 
allows further interaggregate fusion and promotes the formation of 
nanoscale rod-like structures. The chiral control of interfacial tension 
drives the helical tilting and cyclization of nanorods, lowering the 
area of substrate–nanorod interface and facilitating the formation of 
micrometre-scale helical toroids (Fig. 4f). This mechanism was also 
verified by control experiments. The directional inter-nanorod inter-
actions revealed by MD simulation should guide further self-assembly 
on adding extra aggregates. When transferring a second droplet of BU 
colloids containing molecular aggregates to cover the pre-formed 
microtoroid domain on silica wafer (Supplementary Fig. 31a), the 
toroidal topology of interfacial assemblies after natural evaporation 

almost remained but with more crowded subunits, leading to increased 
sizes of toroid diameter (Supplementary Fig. 31e). These results unam-
biguously indicated that the second batch of aggregates continued to 
assemble on the helical surface of the previous microtoroids, instead of 
assembling into new microtoroids, confirming effective inter-nanorod 
interactions.

Energy transfer within acceptor-doped 
microtoroids
The chiral microtoroids composed of luminescent chromophores 
resemble the crystal structure of natural light-harvesting antenna 
complex15. We decided to investigate whether the helical toroids can 
sensitize the guest dye and thus provide a platform for proof-of-concept 
light-harvesting antenna mimicking both chirality and circularity  
features (Fig. 5a)45. A luminescent phosphoric acid compound  
was screened out as the acceptor dye due to its spectral overlap  
and co-assembly ability with the donor BU (Fig. 5b, blue dashed line  
and red solid line), which enables the possibility of Förster resonance 
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energy transfer within the co-assembled artificial antenna46. The  
addition of acceptor dye (S)-BU or (R)-BU acceptors to (S)-BU or  
(R)-BU donors exerted no obvious influence on the toroidal  
topology and helicity of nanostructures, as observed from the  
SEM and fluorescence microscopy images (Fig. 5c and Supplementary 
Figs. 33–36), indicating that the arrangement of chiral acceptor dyes 
followed the helical direction of BU interfacial assemblies. However, 
the chirality match between the acceptor and BU helical microtoroids 
could affect the energy transfer and chiroptical properties of their 
interfacial co-assemblies.

The Förster resonance energy transfer efficiency (ФET) in 
the (S)-BUtoroid/(S)-acceptor system was slightly different from 
the (R)-BUtoroid/(S)-acceptor system for acceptor loading ratios 
(fa) below 30% (Fig. 5d and Supplementary Fig. 37). The ФET value 
could be improved to over 90% at a relatively high fa value of 40%  
(Supplementary Fig. 38), whereas lower fa values gave less satisfac-
tory energy transfer efficiencies. The sign of chiroptical signals of  
the co-assembled antenna was defined by the helicity direction  
of microtoroids; thus, (S)-BUtoroid/(S)-acceptor gave the same hand-
edness of the CD signal as the (S)-BUtoroid (Supplementary Fig. 39, red 
line, and Fig. 3d, blue dashed line). The presence of a chiral acceptor  
dye only affected the spectral position and intensity of the Cotton  
effect of the diastereomeric pairs of (S)-BUtoroid/(S)-acceptor and 
(R)-BUtoroid/(S)-acceptor (Supplementary Fig. 39). When an acceptor  
dye with the energy match was captured by the microtoroid, Förster  
resonance energy transfer occurred as in many other cases47. How-
ever, since the system was chiral, energy-transfer-mediated CPL signal 

ascribed to the acceptor was successfully obtained with a |glum| value 
of 2 × 10−3 (Fig. 5e)48. The structure–property relationship was further 
elaborated by energy transfer and CPL studies in other solvent sys-
tems. Despite the fact that energy transfer could also occur in most of 
the non-toroidal interfacial assemblies by using other solvents, all of  
them failed to give energy-transfer-related CPL signals from the accep-
tor dye (Supplementary Fig. 40), thus again indicating the unique role 
of toroidal topology in defining the expression of overall chiroptical 
functions.

Conclusion
In summary, we have shown a combined solution and interface-guided 
chiral assembly strategy to achieve helical toroidal structures at the 
micrometre scale. The helicity of toroids is governed by the stereogenic 
configuration of BU molecules, adopting a chiral control principle 
of interfacial tension. Morphological analyses, spectroscopic data 
and computational simulations supported an aggregation–cycliza-
tion mechanism for the formation of interfacial microtoroids. The 
operationally simple method could afford monodispersed micro-
metre toroids on varied substrates due to improved morphological 
stability, which provides a powerful alternative approach to the lim-
ited existing methods for generating helical toroids. Furthermore, 
these microtoroids could emit circularly polarized luminescence 
and exhibit excellent host ability to accommodate guest dyes with-
out structural deformation, in a light-harvesting toroid construct. We 
believe that the interfacial self-assembly protocol by drop-evaporation 
or fast spin-coating approaches of pre-formed solution aggregates 
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will lead to the directed hierarchical chiral self-assembly of numer-
ous functional colloidal dispersion systems, highlighting the pros-
pect of larger-sized chiral superstructures with advanced topology 
features. These micrometre-scale structures reach a higher scale of 
chiral self-assembly materials compared with prevailing homochiral 
architectures at molecular scales or nanoscales.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41565-022-01234-w.
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Methods
Materials
All the commercial chemicals were used as received without further 
purification. The synthesis procedures of (S)-BU, (R)-BU and rac-BU 
are listed in Supplementary Scheme 1. The reference BU compounds, 
namely, (S)-BU-C4, (S)-BU-C7, (S)-BU-C11 and (S)-BU-Me, are listed in 
Supplementary Scheme 2.

Interfacial assembly protocol
Typically, 1.75 mg (2 μmol) BU was dispersed into 0.5 ml MeOH in a 3 ml 
sample vial or cuvette. The mixture was heated at 343 K until the solid 
was entirely dissolved. The solution was cooled from 343 K to 293 K 
at a speed of 5 K min−1 with a UH4150 (Hitachi) variable-temperature 
accessory. A drop of the cooled solution was then transferred to the 
target substrate (291 K) via a syringe. After natural evaporation at room 
temperature (293 K), interfacial assemblies were obtained and used for 
further measurements.

SEM, atomic force microscopy and TEM characterizations
SEM measurement was performed on an S4800 (Hitachi) instru-
ment with an accelerating voltage of 10 kV and a working current of  
10 μA. The atomic force microscopy image was recorded on a  
Dimension FastScan (Bruker Nano) instrument with a silicon tip on  
silicon nitride cantilevers in the tapping mode (30 μm length with  
typical resonant frequencies of 400 kHz and spring constant of 4 N m−1). 
TEM was performed on a JEM-1011 ( JEOL) instrument with an accel-
erating voltage of 100 kV. Cryo-TEM was performed on a Themis300 
(Thermo Scientific) instrument with an accelerating voltage of 200 kV 
or 300 kV.

UV–vis spectroscopy
The solution samples were loaded in a quartz cuvette to record the 
UV–vis absorption spectra on a U-3900 (Hitachi) spectrophotometer. 
To avoid scattering effects originating from the large size of these 
microstructures, the solid samples were removed from the substrates 
with a scraper and were transferred to a BaSO4 sample plate, which was 
then measured through the UV–vis diffuse-reflectance spectrum mode 
on a UV-2600 (Shimadzu) spectrophotometer.

Fluorescence spectrum
The fluorescence spectra were recorded on an F-4500 fluorescence 
spectrophotometer (Hitachi) at a voltage of 400 V with a 5 nm  
slit for both excitation and emission sides. Fluorescence decay  
curves were recorded on an FLS980 (Edinburgh Instruments) spec-
trophotometer. The fluorescence quantum yields were measured  
on a FluoroMax Plus (HORIBA) instrument by using an integrating 
sphere.

CD spectrum
The electronic circular dichroism and linear dichroism spectra were 
simultaneously recorded on a CD spectrometer J-1500 ( JASCO)  
at a scanning rate of 500 nm min−1 in the range of ~200–650 nm  
(solution, transmission mode) or ~250–650 nm (solid, diffuse- 
reflectance mode).

CPL
The CPL spectra were recorded on a CPL-300 spectrophotometer 
( JASCO) in the range of ~350–600 nm. The excitation wavelength  
for all the samples was 300 nm. The glum spectra were transferred from 
the CPL spectra using the Spectra Manager software of JASCO (Version 
2.12.00).

Fluorescence microscopy image
The interfacial assemblies were observed on an IX83 (Olympus) fluo-
rescence microscope.

FT-IR spectrum
The ground solid samples were dispersed in a KBr pellet and submitted 
for FT-IR spectra measurement on Bruker Tensor 27. The liquid samples 
were measured on a VERTEX 70v (Bruker) FT-IR instrument.

Powder and single-crystal XRD measurements
The solid samples were directly loaded onto a glass sample holder to 
record the XRD spectra on EmpyreanX (PANalytical) with Cu-Kα radia-
tion (λ = 1.5406 Å) at 40 kV and 40 mA. The scanning range was from 
1° to 60°. Single-crystal XRD was performed by an XtaLAB Synergy-R 
(Rigaku) diffractometer.

NMR and mass spectra
Here 1H NMR, 13C NMR, COSY and ROESY spectra were measured  
on Bruker Avance spectrometers (Bruker BioSpin) with CD3OD,  
CDCl3 or acetone-d6 as the solvents. Matrix-assisted laser desorp-
tion/ionization Fourier-transform ion cyclotron resonance mass 
spectro metry was performed on an ultrafleXtreme (Bruker) mass 
spectrometer.

High-performance liquid chromatography
The samples were measured on Waters 1525 binary HPLC pump with an 
analytical chiral column CHIRALPAK AD-H (5 μm), and an isopropanol/
hexane mixture was used as the mobile phase.

DLS
The samples were measured at 293 K by a Zetasizer Nano ZS ZEN3600 
instrument (Malvern Instruments).

DFT computation
The energy-optimized structures were obtained by DFT computation at 
the B3LYP 6-311 + g(d,p) level of theory. The absorption and CD spectra 
were calculated by time-dependent DFT methods49.

MD simulations
Atomistic MD simulations have been performed in the GROMACS 
(version 2020.6) simulation package using gaff2. The temperature 
was coupled to 298 K using the Nosé–Hoover method and the pressure 
was coupled to 1 atm using the Parrinello–Rahman method. The cutoff 
scheme of 1.2 nm was implemented for the non-bonded interactions, 
and the particle mesh Ewald method with a Fourier spacing of 0.1 nm 
was applied for the long-range electrostatic interactions. All the cova-
lent bonds with hydrogen atoms were constrained using the linear 
constraint solver algorithm.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
All relevant data are available from the corresponding authors on rea-
sonable request. The X-ray crystallographic coordinates for structures 
reported in this study have been deposited at the Cambridge Crystal-
lographic Data Centre (CCDC) under deposition numbers 2203258 
for (S)-BU and 2203259 for rac-BU. These data can be obtained free of 
charge from the CCDC via http://www.ccdc.cam.ac.uk/data_request/
cif. Source data are provided with this paper.
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