Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanophotonic control of thermal emission under extreme temperatures in air


Nanophotonic materials offer spectral and directional control over thermal emission, but in high-temperature oxidizing environments, their stability remains low. This limits their applications in technologies such as solid-state energy conversion and thermal barrier coatings. Here we show an epitaxial heterostructure of perovskite BaZr0.5Hf0.5O3 (BZHO) and rocksalt MgO that is stable up to 1,100 °C in air. The heterostructure exhibits coherent atomic registry and clearly separated refractive-index-mismatched layers after prolonged exposure to this extreme environment. The immiscibility of the two materials is corroborated by the high formation energy of substitutional defects from density functional theory calculations. The epitaxy of immiscible refractory oxides is, therefore, an effective method to avoid prevalent thermal instabilities in nanophotonic materials, such as grain-growth degradation, interlayer mixing and oxidation. As a functional example, a BZHO/MgO photonic crystal is implemented as a filter to suppress long-wavelength thermal emission from the leading bulk selective emitter and effectively raise its cutoff energy by 20%, which can produce a corresponding gain in the efficiency of mobile thermophotovoltaic systems. Beyond BZHO/MgO, computational screening shows that hundreds of potential cubic oxide pairs fit the design principles of immiscible refractory photonics. Extending the concept to other material systems could enable further breakthroughs in a wide range of photonic and energy conversion applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design criteria for ultrahigh-temperature-stable and optically tunable BZHO/MgO photonic crystals.
Fig. 2: Demonstration of thermal stability of BZHO/MgO superlattices.
Fig. 3: Spectral control and stability of BZHO/MgO PhCs.
Fig. 4: Spectral control of emission for thermal management and TPV applications.
Fig. 5: Materials screening for high-temperature nanophotonics.

Similar content being viewed by others

Data availability

Raw data are available via Deep Blue Data (a public repository hosted by the University of Michigan) at The optical spectra used to calculate the TPV FOM were obtained from ref. 1.

Code availability

Analysis code for raw data is available via Deep Blue Data at Our open-source code to find lattice-matched immiscible oxides is available via GitHub at


  1. Burger, T., Sempere, C., Roy-Layinde, B. & Lenert, A. Present efficiencies and future opportunities in thermophotovoltaics. Joule 4, 1660–1680 (2020).

  2. LaPotin, A. et al. Thermophotovoltaic efficiency of 40%. Nature 604, 287–291 (2022).

    Article  CAS  Google Scholar 

  3. Bitnar, S. et al. Practical thermophotovoltaic generators. Semiconductors 38, 941–945 (2004).

  4. Nakagawa, N., Ohtsubo, H., Waku, Y. & Yugami, H. Thermal emission properties of Al2O3/Er3Al5O12 eutectic ceramics. J. Eur. Ceram. Soc. 25, 1285–1291 (2005).

  5. Ferguson, L. G. & Dogan, F. A highly efficient NiO-doped MgO matched emitter for thermophotovoltaic energy conversion. Mater. Sci. Eng. B 83, 35–41 (2001).

  6. Fraas, L. M., Avery, J. E. & Huang, H. X. Thermophotovoltaic furnace–generator for the home using low bandgap GaSb cells. Semicond. Sci. Technol. 18, S247–S253 (2003).

    Article  CAS  Google Scholar 

  7. Chirumamilla, M. et al. Metamaterial emitter for thermophotovoltaics stable up to 1400 °C. Sci. Rep. 9, 7241 (2019).

    Article  Google Scholar 

  8. Chirumamilla, M. et al. Thermal stability of tungsten based metamaterial emitter under medium vacuum and inert gas conditions. Sci. Rep. 10, 3605 (2020).

    Article  CAS  Google Scholar 

  9. Wang, Y. et al. Hybrid solar absorber–emitter by coherence‐enhanced absorption for improved solar thermophotovoltaic conversion. Adv. Opt. Mater. 6, 1800813 (2018).

  10. Kim, J. H., Jung, S. M. & Shin, M. W. Thermal degradation of refractory layered metamaterial for thermophotovoltaic emitter under high vacuum condition. Opt. Express 27, 3039–3054 (2019).

    Article  CAS  Google Scholar 

  11. Shimizu, M., Kohiyama, A. & Yugami, H. Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics. J. Quant. Spectrosc. Radiat. Transf. 212, 45–49 (2018).

  12. Stelmakh, V. et al. High-temperature tantalum tungsten alloy photonic crystals: stability, optical properties, and fabrication. Appl. Phys. Lett. 103, 123903 (2013).

  13. Woolf, D. N. et al. High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter. Optica 5, 213–218 (2018).

  14. Rinnerbauer, V. et al. High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals. Opt. Express 21, 11482–11491 (2013).

    Article  CAS  Google Scholar 

  15. Cui, K. et al. Tungsten–carbon nanotube composite photonic crystals as thermally stable spectral‐selective absorbers and emitters for thermophotovoltaics. Adv. Energy Mater. 8, 1801471 (2018).

    Article  Google Scholar 

  16. Yeng, Y. X. et al. Enabling high-temperature nanophotonics for energy applications. Proc. Natl Acad. Sci. USA 109, 2280–2285 (2012).

    Article  CAS  Google Scholar 

  17. Cho, J.-W. et al. Optical tunneling mediated sub-skin-depth high emissivity tungsten radiators. Nano Lett. 19, 7093–7099 (2019).

    Article  CAS  Google Scholar 

  18. Chan, W. R. et al. Enabling efficient heat-to-electricity generation at the mesoscale. Energy Environ. Sci. 10, 1367–1371 (2017).

  19. Li, P. et al. Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion. Adv. Mater. 27, 4585–4591 (2015).

    Article  CAS  Google Scholar 

  20. Arpin, K. A. et al. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification. Nat. Commun. 4, 2630 (2013).

    Article  Google Scholar 

  21. Arpin, K. A., Losego, M. D. & Braun, P. V. Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability. Chem. Mater. 23, 4783–4788 (2011).

  22. Kim, Y., Kim, M.-J., Kim, Y.-S., Lee, H. & Lee, S.-M. Nanostructured radiation emitters: design rules for high-performance thermophotovoltaic systems. ACS Photon. 6, 2260–2267 (2019).

    Article  CAS  Google Scholar 

  23. Chou, J. B. et al. Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals. Adv. Mater. 26, 8041–8045 (2014).

    Article  CAS  Google Scholar 

  24. Peykov, D., Yeng, Y. X., Celanovic, I., Joannopoulos, J. D. & Schuh, C. A. Effects of surface diffusion on high temperature selective emitters. Opt. Express 23, 9979–9993 (2015).

    Article  Google Scholar 

  25. Dyachenko, P. N. et al. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions. Nat. Commun. 7, 11809 (2016).

    Article  CAS  Google Scholar 

  26. Lee, H.-J. et al. Hafnia-plugged microcavities for thermal stability of selective emitters. Appl. Phys. Lett. 102, 241904 (2013).

    Article  Google Scholar 

  27. Han, S., Shin, J.-H., Jung, P.-H., Lee, H. & Lee, B. J. Broadband solar thermal absorber based on optical metamaterials for high-temperature applications. Adv. Opt. Mater. 4, 1265–1273 (2016).

    Article  CAS  Google Scholar 

  28. Wells, M. P. et al. Temperature stability of thin film refractory plasmonic materials. Opt. Express 26, 15726–15744 (2018).

    Article  Google Scholar 

  29. Rost, C. M. et al. Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).

    Article  CAS  Google Scholar 

  30. Berquist, Z. J., Gayle, A. J., Dasgupta, N. P. & Lenert, A. Transparent refractory aerogels for efficient spectral control in high‐temperature solar power generation. Adv. Funct. Mater. 32, 2108774 (2021).

  31. Fan, D. et al. Near-perfect photon utilization in an air-bridge thermophotovoltaic cell. Nature 586, 237–241 (2020).

    Article  CAS  Google Scholar 

  32. Omair, Z. et al. Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering. Proc. Natl Acad. Sci. USA 116, 15356–15361 (2019).

    Article  CAS  Google Scholar 

  33. Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

  34. Sasamoto, T., Mizushima, K. & Sata, T. Transpiration study of the reaction of water vapor with barium oxide. Bull. Chem. Soc. Jpn 52, 2127–2129 (1979).

    Article  CAS  Google Scholar 

  35. Meschter, P. J., Opila, E. J. & Jacobson, N. S. Water vapor-mediated volatilization of high-temperature materials. Annu. Rev. Mater. Res. 43, 559–588 (2013).

    Article  CAS  Google Scholar 

  36. Guler, U., Boltasseva, A. & Shalaev, V. M. Refractory plasmonics. Science 344, 263–264 (2014).

    Article  CAS  Google Scholar 

  37. Maekawa, T., Kurosaki, K. & Yamanaka, S. Thermal and mechanical properties of perovskite-type barium hafnate. J. Alloys Compd. 407, 44–48 (2006).

    Article  CAS  Google Scholar 

  38. Yamanaka, S. et al. Thermophysical properties of BaZrO3 and BaCeO3. J. Alloys Compd. 359, 109–113 (2003).

    Article  CAS  Google Scholar 

  39. Durand, M. A. The coefficient of thermal expansion of magnesium oxide. Physics 7, 297–298 (1936).

    Article  CAS  Google Scholar 

  40. Wang, X. et al. Calculation of thermal expansion coefficient of rare earth zirconate system at high temperature by first principles. Materials 15, 2264 (2022).

    Article  CAS  Google Scholar 

  41. Ding, H. et al. Computational approach for epitaxial polymorph stabilization through substrate selection. ACS Appl. Mater. Interfaces 8, 13086–13093 (2016).

    Article  CAS  Google Scholar 

  42. Wang, X., Lee, E., Xu, C. & Liu, J. High-efficiency, air-stable manganese–iron oxide nanoparticle-pigmented solar selective absorber coatings toward concentrating solar power systems operating at 750 °C. Mater. Today Energy 19, 100609 (2021).

    Article  CAS  Google Scholar 

  43. Wang, H. et al. Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).

    Article  Google Scholar 

  44. Zou, C., Xie, W. & Shao, L. Functional multi-layer solar spectral selective absorbing coatings of AlCrSiN/AlCrSiON/AlCrO for high temperature applications. Sol. Energy Mater. Sol. Cells 153, 9–17 (2016).

    Article  CAS  Google Scholar 

  45. Xu, J., Mandal, J. & Raman, A. P. Broadband directional control of thermal emission. Science 372, 393–397 (2021).

    Article  CAS  Google Scholar 

  46. Mehboob, G. et al. A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime. Ceram. Int. 46, 8497–8521 (2020).

    Article  CAS  Google Scholar 

  47. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane–wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  49. Li, W. et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7959–7965 (2014).

    Article  CAS  Google Scholar 

  50. Chirumamilla, M. et al. Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars. Adv. Opt. Mater. 5, 1700552 (2017).

    Article  Google Scholar 

Download references


We acknowledge financial support from the Department of Defense, Defense Advanced Research Projects Agency, under grant no. HR00112190005. The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the US Government. S.M. acknowledges support by the National Science Foundation (NSF) Graduate Research Fellowship under grant no. NSF DGE 1256260 and the Rackham Predoctoral Fellowship. M.W. and J.T.H. acknowledge financial support from the University of Michigan College of Engineering and technical support from the Michigan Center for Materials Characterization. The defect calculations used resources of the National Energy Research Scientific Computing (NERSC) Center, a Department of Energy Office of Science User Facility, supported under contract no. DEAC0205CH11231. The optical and electrical calculations were performed on Rivanna, the high-performance computing system at the University of Virginia. We offer special thanks to B. Lezzi and M. Shtein for access to the ellipsometry equipment. We also thank W. Carter, R. Hovden and A. Hunter for helpful discussions and feedback.

Author information

Authors and Affiliations



Materials growth: M.W. and J.T.H. TEM analysis: T.M., M.W. and J.T.H. XRD: M.W. and J.T.H. Optical characterization: S.M. and A.L. Defect calculations: Z.D. and E.K. Screening code: S.M. and J.K. TPV calculations: S.M. and A.L. Funding and project administration: E.K., K.E., J.T.H. and A.L. Supervision: E.K., K.E., J.T.H. and A.L. Writing original draft: S.M., M.W., J.T.H. and A.L. Review and editing: all authors.

Corresponding authors

Correspondence to John T. Heron or Andrej Lenert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Manohar Chirumamilla, Gururaj Naik and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 High Temperature Materials Reference Table

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Sections 1–9 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McSherry, S., Webb, M., Kaufman, J. et al. Nanophotonic control of thermal emission under extreme temperatures in air. Nat. Nanotechnol. 17, 1104–1110 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing