Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics

Abstract

The distinctive properties of single-walled carbon nanotubes (SWCNTs) have inspired the development of many novel applications in the field of cell nanobiotechnology. However, studies thus far have not explored the effect of SWCNT functionalization on transport across the cell walls of prokaryotes. We explore the uptake of SWCNTs in Gram-negative cyanobacteria and demonstrate a passive length-dependent and selective internalization of SWCNTs decorated with positively charged biomolecules. We show that lysozyme-coated SWCNTs spontaneously penetrate the cell walls of a unicellular strain and a multicellular strain. A custom-built spinning-disc confocal microscope was used to image the distinct near-infrared SWCNT fluorescence within the autofluorescent cells, revealing a highly inhomogeneous distribution of SWCNTs. Real-time near-infrared monitoring of cell growth and division reveal that the SWCNTs are inherited by daughter cells. Moreover, these nanobionic living cells retained photosynthetic activity and showed an improved photo-exoelectrogenicity when incorporated into bioelectrochemical devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NIR imaging of internalized SWCNTs.
Fig. 2: Localization of internalized SWCNTs.
Fig. 3: Effect of surface charge on SWCNT uptake.
Fig. 4: SWCNT internalization by strains lacking T4P.
Fig. 5: Effect of SWCNT internalization on photosynthesis and cell viability.
Fig. 6: Biophotovoltaic and electrode characterization of nanobionic Synechocystis cells.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available within the paper and Supplementary Information. Raw data (microscopy, spectroscopy and electrochemical measurements) of the results reported in this study are available via Zenodo at https://doi.org/10.5281/zenodo.6790098. All other relevant data and findings of this study are available from the corresponding author upon reasonable request.

Code availability

Details of the custom MATLAB code are available in the Supplementary Information. The complete custom MATLAB code is available via Zenodo at https://doi.org/10.5281/zenodo.6777770.

References

  1. Liu, Z., Tabakman, S. M., Chen, Z. & Dai, H. Preparation of carbon nanotube bioconjugates for biomedical applications. Nat. Protoc. 4, 1372–1381 (2009).

    Article  CAS  Google Scholar 

  2. Wang, X. & Liu, Z. Carbon nanotubes in biology and medicine: an overview. Chin. Sci. Bull. 57, 167–180 (2012).

    Article  CAS  Google Scholar 

  3. Gillen, A. J. et al. Templating colloidal sieves for tuning nanotube surface interactions and optical sensor responses. J. Colloid Interf. Sci. 565, 55–62 (2020).

    Article  CAS  Google Scholar 

  4. Gillen, A. J. & Boghossian, A. A. Non-covalent methods of engineering optical sensors based on single-walled carbon nanotubes. Front Chem. 7, 612 (2019).

    Article  CAS  Google Scholar 

  5. Lambert, B., Gillen, A. J., Schuergers, N., Wu, S. J. & Boghossian, A. A. Directed evolution of the optoelectronic properties of synthetic nanomaterials. Chem. Commun. 55, 3239–3242 (2019).

    Article  CAS  Google Scholar 

  6. Wu, S. J. et al. Restriction enzyme analysis of double-stranded DNA on pristine single-walled carbon nanotubes. ACS Appl. Mater. Interfaces 10, 37386–37395 (2018).

    Article  CAS  Google Scholar 

  7. Hashida, Y. et al. Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite. J. Control. Release 173, 58–66 (2014).

    Article  Google Scholar 

  8. Jena, P. V. et al. Photoluminescent carbon nanotubes interrogate the permeability of multicellular tumor spheroids. Carbon 97, 99–109 (2016).

    Article  CAS  Google Scholar 

  9. Boghossian, A. A. et al. Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications. ChemSusChem 4, 848–863 (2011).

    Article  CAS  Google Scholar 

  10. Heller, D. A. et al. Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat. Nanotechnol. 4, 114–120 (2009).

    Article  CAS  Google Scholar 

  11. Zubkovs, V., Schuergers, N., Lambert, B., Ahunbay, E. & Boghossian, A. A. Mediatorless, reversible optical nanosensor enabled through enzymatic pocket doping. Small 13, 1701654 (2017).

    Article  Google Scholar 

  12. Gillen, A. J., Kupis-Rozmyslowicz, J., Gigli, C., Schürgers, N. & Boghossian, A. A. Xeno nucleic acid nanosensors for enhanced stability against ion-induced perturbations. J. Phys. Chem. Lett. 9, 4336–4343 (2018).

    Article  CAS  Google Scholar 

  13. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  CAS  Google Scholar 

  14. Barone, P. W., Baik, S., Heller, D. A. & Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 4, 86–92 (2005).

    Article  CAS  Google Scholar 

  15. Holt, B. D., Dahl, K. N., Islam, M. F. & Al, H. E. T. Cells take up and recover from nanotubes with two distinct rates. ACS Nano 6, 3481–3490 (2012).

    Article  CAS  Google Scholar 

  16. Boyer, P. et al. Delivering single-walled carbon nanotubes to the nucleus using engineered nuclear protein domains. ACS Appl. Mater. Interfaces 8, 3524–3534 (2016).

    Article  CAS  Google Scholar 

  17. Giraldo, J. P. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014).

    Article  CAS  Google Scholar 

  18. Mouhib, M. et al. Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials. Nano Res. https://doi.org/10.1007/s12274-019-2438-0 (2019).

  19. Wong, M. H. et al. Lipid Exchange Envelope Penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett. 16, 1161–1172 (2016).

    Article  CAS  Google Scholar 

  20. Kwak, S.-Y. et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019).

    Article  CAS  Google Scholar 

  21. Zubkovs, V. et al. Spinning-disc confocal microscopy in the second near-infrared window (NIR-II). Sci. Rep. 8, 13770 (2018).

    Article  Google Scholar 

  22. Kostarelos, K. et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2, 108–113 (2007).

    Article  CAS  Google Scholar 

  23. Heller, D. A. et al. Concomitant length and diameter separation of single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 14567–14573 (2004).

    Article  CAS  Google Scholar 

  24. Rajan, A., Strano, M. S., Heller, D. A., Hertel, T. & Schulten, K. Length-dependent optical effects in single walled carbon nanotubes. J. Phys. Chem. B 112, 6211–6213 (2008).

    Article  CAS  Google Scholar 

  25. Barone, P. W., Parker, R. S. & Strano, M. S. In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: design, fluorophore properties, advantages, and disadvantages. Anal. Chem. 77, 7556–7562 (2005).

    Article  CAS  Google Scholar 

  26. Robinson, S. J., Deroo, C. S. & Yocum, C. F. Photosynthetic electron transfer in preparations of the cyanobacterium spirulina platensis. Plant Physiol. 70, 154–161 (1982).

    Article  CAS  Google Scholar 

  27. Gonzalez-Aravena, A. C., Yunus, K., Zhang, L., Norling, B. & Fisher, A. C. Tapping into cyanobacteria electron transfer for higher exoelectrogenic activity by imposing iron limited growth. RSC Adv. 8, 20263–20274 (2018).

    Article  CAS  Google Scholar 

  28. Orlanducci, S. et al. Mapping single walled carbon nanotubes in photosynthetic algae by single-cell confocal Raman microscopy. Materials 13, 5121 (2020).

    Article  CAS  Google Scholar 

  29. Gierlinger, N., Keplinger, T. & Harrington, M. Imaging of plant cell walls by confocal Raman microscopy. Nat. Protoc. 7, 1694–1708 (2012).

    Article  CAS  Google Scholar 

  30. Neves, V. et al. Uptake and release of double-walled carbon nanotubes by mammalian cells. Adv. Funct. Mater. 20, 3272–3279 (2010).

    Article  CAS  Google Scholar 

  31. Xie, L. et al. Single-walled carbon nanotubes probing the denaturation of lysozyme. J. Phys. Chem. C 114, 7717–7720 (2010).

    Article  CAS  Google Scholar 

  32. Holt, B. D., Dahl, K. N. & Islam, M. F. Quantification of uptake and localization of bovine serum albumin-stabilized single-wall carbon nanotubes in different human cell types. Small 7, 2348–2355 (2011).

    Article  CAS  Google Scholar 

  33. Nepal, D. & Geckeler, K. E. Proteins and carbon nanotubes: close encounter in water. Small 3, 1259–1265 (2007).

    Article  CAS  Google Scholar 

  34. Jacobson, K. H. et al. Lipopolysaccharide density and structure govern the extent and distance of nanoparticle interaction with actual and model bacterial outer membranes. Environ. Sci. Technol. 49, 10642–10650 (2015).

    Article  CAS  Google Scholar 

  35. Schuergers, N. & Wilde, A. Appendages of the cyanobacterial cell. Life 5, 700–715 (2015).

    Article  CAS  Google Scholar 

  36. Dienst, D. et al. The cyanobacterial homologue of the RNA Chaperone Hfq is essential for motility of Synechocystis sp. PCC 6803. Microbiology 154, 3134–3143 (2008).

    Article  CAS  Google Scholar 

  37. Duggan, P. S., Gottardello, P. & Adams, D. G. Molecular analysis of genes in Nostoc punctiforme involved in pilus biogenesis and plant infection. J. Bacteriol. 189, 4547–4551 (2007).

    Article  CAS  Google Scholar 

  38. Herrero, A., Stavans, J. & Flores, E. The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiol. Rev. 40, 831–854 (2016).

    Article  CAS  Google Scholar 

  39. Pantarotto, D., Briand, J.-P., Prato, M. & Bianco, A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 1, 16–17 (2004).

    Article  Google Scholar 

  40. Kraszewski, S., Bianco, A., Tarek, M. & Ramseyer, C. Insertion of short amino-functionalized single-walled carbon nanotubes into phospholipid bilayer occurs by passive diffusion. PLoS ONE 7, e40703 (2012).

    Article  CAS  Google Scholar 

  41. Mu, Q., Broughton, D. L. & Yan, B. Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. Nano Lett. https://doi.org/10.1021/nl902647x (2009).

  42. Lacerda, L. et al. How do functionalized carbon nanotubes land on, bind to and pierce through model and plasma membranes. Nanoscale 5, 10242–10250 (2013).

    Article  CAS  Google Scholar 

  43. Demirer, G. S. et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019).

    Article  CAS  Google Scholar 

  44. Costa, P. M., Bourgognon, M., Wang, J. T. W. & Al-Jamal, K. T. Functionalized carbon nanotubes: from intracellular uptake and cell-related toxicity to systemic brain delivery. J. Control. Release 241, 200–219 (2016).

    Article  CAS  Google Scholar 

  45. Kowata, H., Tochigi, S., Takahashi, H. & Kojima, S. Outer membrane permeability of cyanobacterium Synechocystis sp. strain PCC 6803: studies of passive diffusion of small organic nutrients reveal the absence of classical porins and intrinsically low permeability. J. Bacteriol. 199, e00371-17 (2017).

    Article  Google Scholar 

  46. Gao, Y. et al. Predictive models of diffusive nanoparticle transport in 3-dimensional tumor cell spheroids. AAPS J. 15, 816–831 (2013).

    Article  CAS  Google Scholar 

  47. Allen, B. L. et al. Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes. J. Am. Chem. Soc. 131, 17194–17205 (2009).

    Article  CAS  Google Scholar 

  48. Kotchey, G. P., Zhao, Y., Kagan, V. E. & Star, A. Peroxidase-mediated biodegradation of carbon nanotubes in vitro and in vivo. Adv. Drug Deliv. Rev. 65, 1921–1932 (2013).

    Article  CAS  Google Scholar 

  49. Ignatova, T., Chandrasekar, S., Pirbhai, M., Jedlicka, S. S. & Rotkin, S. V. Micro-Raman spectroscopy as an enabling tool for long-term intracellular studies of nanomaterials at nanomolar concentration levels. J. Mater. Chem. B 5, 6536–6545 (2017).

    Article  CAS  Google Scholar 

  50. Pan, J., Li, F. & Choi, J. H. Single-walled carbon nanotubes as optical probes for bio-sensing and imaging. J. Mater. Chem. B 5, 6511–6652 (2017).

    Article  CAS  Google Scholar 

  51. Galassi, T. V. et al. Long-term in vivo biocompatibility of single-walled carbon nanotubes. PLoS ONE 15, e0226791 (2020).

    Article  CAS  Google Scholar 

  52. Pirbhai, M. et al. Augmentation of C17. 2 neural stem cell differentiation via uptake of low concentrations of ssDNA‐wrapped single‐walled carbon nanotubes. Adv. Biosyst. 3, 1800321 (2019).

    Article  CAS  Google Scholar 

  53. Reggente, M., Politi, S., Antonucci, A., Tamburri, E. & Boghossian, A. A. Design of optimized PEDOT-based electrodes for enhancing performance of living photovoltaics based on phototropic bacteria. Adv. Mater. Technol. 5, 1900931 (2020).

    Article  CAS  Google Scholar 

  54. Bombelli, P. et al. Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy Environ. Sci. 4, 4690–4698 (2011).

    Article  CAS  Google Scholar 

  55. Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338–342 (2003).

    Article  CAS  Google Scholar 

  56. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61 (1979).

    Google Scholar 

  57. Schuergers, N., Nürnberg, D. J., Wallner, T., Mullineaux, C. W., & Wilde, A. PilB localization correlates with the direction of twitching motility in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 161, 960–966 (2015).

    Article  CAS  Google Scholar 

  58. Gao, Z. et al. Optical detection of individual ultra-short carbon nanotubes enables their length characterization down to 10 Nm. Sci. Rep. 5, 17093 (2015).

    Article  CAS  Google Scholar 

  59. Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Open Physics 10, 181–188 (2012).

    Article  Google Scholar 

  60. Jin, H., Heller, D. A., Sharma, R. & Strano, M. S. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3, 149–158 (2009).

    Article  CAS  Google Scholar 

  61. Ritchie, R. J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 89, 27–41 (2006).

    Article  CAS  Google Scholar 

  62. Currie, J. & Wilson, D. I. OPTI: Lowering the barrier between open source optimizers and the industrial MATLAB user. In Proc. Foundations of Computer-Aided Process Operations (Omnipress, 2012); http://focapo.cheme.cmu.edu/2012/proceedings/data/start.htm

  63. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Swiss National Science Foundation (SNSF) for support under an Assistant Professor (AP) Energy Grant (Project No. PYAPP2_154269) (A.A.B) and Swiss National Science Foundation Project No. IZLIZ2_182972 (A.A.B.). We also thank K. Sivula from the Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (LIMNO) at EPFL for access to the AFM facility.

Author information

Authors and Affiliations

Authors

Contributions

A.A. and A.A.B conceived the project and designed the study. A.A., M.R., and C.R. performed cell imaging and uptake experiments. V.Z. built the NIR confocal microscope used in the study. M.R. and C.R. performed the electrochemical measurements. M.R. performed the AFM imaging. B.P.L. prepared the samples used for the density-gradient centrifugation and helped with the fluorescence imaging experiments. M.M. performed the western blot analysis and N.S. helped with the biological sample preparation. A.J.G. helped with the analysis of the fluorescence measurements. L.D. and E.C. designed the TEM experiments, and E.C. performed the sample preparation and TEM imaging. A.A.B. analysed the collected data. All authors contributed to the preparation, writing and editing of this manuscript.

Corresponding author

Correspondence to Ardemis A. Boghossian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Sebastian Kruss, Khaled Selim and Christa Walther for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Tables 1–3, Methods, Discussion and references.

Reporting Summary.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonucci, A., Reggente, M., Roullier, C. et al. Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics. Nat. Nanotechnol. 17, 1111–1119 (2022). https://doi.org/10.1038/s41565-022-01198-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01198-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing