Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metasurface optofluidics for dynamic control of light fields

Abstract

The ability to manipulate light and liquids on integrated optofluidics chips has spurred a myriad of important developments in biology, medicine, chemistry and display technologies. Here we show how the convergence of optofluidics and metasurface optics can lead to conceptually new platforms for the dynamic control of light fields. We first demonstrate metasurface building blocks that display an extreme sensitivity in their scattering properties to their dielectric environment. These blocks are then used to create metasurface-based flat optics inside microfluidic channels where liquids with different refractive indices can be directed to manipulate their optical behaviour. We demonstrate the intensity and spectral tuning of metasurface colour pixels as well as on-demand optical elements. We finally demonstrate automated control in an integrated meta-optofluidic platform to open up new display functions. Combined with large-scale microfluidic integration, our dynamic-metasurface flat-optics platform could open up the possibility of dynamic display, imaging, holography and sensing applications.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: A comprehensive dynamic-metasurface optofluidic platform.
Fig. 2: Mechanism of dynamic reflectivity and colour control in Si metasurfaces.
Fig. 3: Mechanism of dynamic diffraction efficiency control and spectral control of phased-array optics by Si geometric phase metasurfaces.
Fig. 4: Integration of dynamic metasurfaces with programmable microfluidics on a transparent substrate.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Squires, T. M. & Quake, S. R. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005).

    Article  CAS  Google Scholar 

  2. Sackmann, E. K., Fulton, A. L. & Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014).

    Article  CAS  Google Scholar 

  3. Chin, C. D., Linder, V. & Sia, S. K. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12, 2118–2134 (2012).

    Article  CAS  Google Scholar 

  4. Günther, A. & Jensen, K. F. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 6, 1487–1503 (2006).

    Article  Google Scholar 

  5. Psaltis, D., Quake, S. R. & Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006).

    Article  CAS  Google Scholar 

  6. Monat, C., Domachuk, P. & Eggleton, B. J. Integrated optofluidics: a new river of light. Nat. Photon. 1, 106–114 (2007).

    Article  CAS  Google Scholar 

  7. Schmidt, H. & Hawkins, A. R. The photonic integration of non-solid media using optofluidics. Nat. Photon. 5, 598–604 (2011).

    Article  CAS  Google Scholar 

  8. Song, C. & Tan, S. H. A perspective on the rise of optofluidics and the future. Micromachines 8, 152 (2017).

    Article  Google Scholar 

  9. Genevet, P., Capasso, F., Aieta, F., Khorasaninejad, M. & Devlin, R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139–152 (2017).

    Article  Google Scholar 

  10. Wu, P. C. et al. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface. Adv. Opt. Mater. 5, 1600938 (2017).

    Article  Google Scholar 

  11. Zhang, W. et al. Microfluid-based soft metasurface for tunable optical activity in THz wave. Opt. Express 29, 8786–8795 (2021).

    Article  Google Scholar 

  12. Tokuda, Y., Iwasaki, S., Sato, Y., Nakanishi, Y. & Koike, H. Ubiquitous display for dynamically changing environments. In CHI03 Extended Abstracts on Human Factors in Computing Systems 976–977 (ACM, 2003).

  13. Chen, H. W., Lee, J. H., Lin, B. Y., Chen, S. & Wu, S. T. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light Sci. Appl. 7, 17168 (2018).

  14. Comiskey, B., Albert, J. D., Yoshizawa, H. & Jacobson, J. J. An electrophoretic ink for all-printed reflective electronic displays. Nature 394, 253–255 (1998).

    Article  CAS  Google Scholar 

  15. Hayes, R. A. & Feenstra, B. J. Video-speed electronic paper based on electrowetting. Nature 425, 383–385 (2003).

    Article  CAS  Google Scholar 

  16. Heikenfeld, J. et al. Electrofluidic displays using Young–Laplace transposition of brilliant pigment dispersions. Nat. Photon. 3, 292–296 (2009).

    Article  CAS  Google Scholar 

  17. Feenstra, B. J. et al. A video-speed reflective display based on electrowetting: principle and properties. J. Soc. Inf. Disp. 12, 293–299 (2004).

    Article  Google Scholar 

  18. Cao, L., Fan, P., Barnard, E. S., Brown, A. M. & Brongersma, M. L. Tuning the color of silicon nanostructures. Nano Lett. 10, 2649–2654 (2010).

    Article  CAS  Google Scholar 

  19. Neder, V., Luxembourg, S. L. & Polman, A. Efficient colored silicon solar modules using integrated resonant dielectric nanoscatterers. Appl. Phys. Lett. 111, 073902 (2017).

    Article  Google Scholar 

  20. Yang, W. et al. All-dielectric metasurface for high-performance structural color. Nat. Commun. 11, 1864 (2020).

    Article  CAS  Google Scholar 

  21. Kristensen, A. et al. Plasmonic colour generation. Nat. Rev. Mater. 2, 16088 (2016).

    Article  Google Scholar 

  22. Huo, P. et al. Photorealistic full-color nanopainting enabled by a low-loss metasurface. Optica 7, 1171–1172 (2020).

    Article  CAS  Google Scholar 

  23. Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14, 227–231 (2019).

    Article  CAS  Google Scholar 

  24. Holsteen, A. L., Lin, D., Kauvar, I., Wetzstein, G. & Brongersma, M. L. A light-field metasurface for high-resolution single-particle tracking. Nano Lett. 19, 2267–2271 (2019).

    Article  CAS  Google Scholar 

  25. Engheta, N., Salandrino, A. & Alù, A. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys. Rev. Lett. 95, 95504 (2005).

    Article  Google Scholar 

  26. Joo, W. et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science 370, 459–463 (2020).

    Article  CAS  Google Scholar 

  27. Sun, S. et al. Real-time tunable colors from micro fluidic reconfigurable all-dielectric metasurfaces. ACS Nano 12, 2151–2159 (2018).

    Article  CAS  Google Scholar 

  28. Komar, A. et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals. Appl. Phys. Lett. 110, 071109 (2017).

    Article  Google Scholar 

  29. Zou, C. et al. Electrically tunable transparent displays for visible light based on dielectric metasurfaces. ACS Photon. 6, 1533–1540 (2019).

  30. Li, S.-Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).

    Article  CAS  Google Scholar 

  31. Komar, A. et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photon. 5, 1742–1748 (2018).

  32. Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002).

    Article  Google Scholar 

  33. Kerker, M., Wang, D. & Giles, C. L. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983).

    Article  Google Scholar 

  34. Person, S. et al. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett. 13, 1806–1809 (2013).

    Article  CAS  Google Scholar 

  35. Liu, W. & Kivshar, Y. S. Generalized Kerker effects in nanophotonics and meta-optics [Invited]. Opt. Express 26, 13085–13105 (2018).

    Google Scholar 

  36. Pfeiffer, C. & Grbic, A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110, 197401 (2013).

    Article  Google Scholar 

  37. Decker, M. et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3, 813–820 (2015).

    Article  CAS  Google Scholar 

  38. Yu, Y. F. et al. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photon. Rev. 9, 412–418 (2015).

    Article  CAS  Google Scholar 

  39. Sauvan, C., Hugonin, J. P., Maksymov, I. S. & Lalanne, P. Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys. Rev. Lett. 110, 237401 (2013).

    Article  CAS  Google Scholar 

  40. Auguié, B. & Barnes, W. L. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101, 143902 (2008).

    Article  Google Scholar 

  41. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Article  CAS  Google Scholar 

  42. Bhushan, B., Hansford, D. & Lee, K. K. Surface modification of silicon and polydimethylsiloxane surfaces with vapor-phase-deposited ultrathin fluorosilane films for biomedical nanodevices. J. Vac. Sci. Technol. A 24, 1197 (2006).

  43. Mahadik, D. B. et al. Effect of concentration of trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ) silylating agents on surface free energy of silica aerogels. J. Colloid Interface Sci. 356, 298–302 (2011).

    Article  CAS  Google Scholar 

  44. Thorsen, T. Microfluidic large-scale integration. Science 298, 580–584 (2002).

    Article  CAS  Google Scholar 

  45. Sell, D., Yang, J., Doshay, S., Zhang, K. & Fan, J. A. Visible light metasurfaces based on single-crystal silicon. ACS Photon. 3, 1919–1925 (2016).

  46. Longwell, S. AcqPack. GitHub https://github.com/FordyceLab/AcqPack (2017).

  47. Gerver, R. E. et al. Programmable microfluidic synthesis of spectrally encoded microspheres. Lab Chip 12, 4716–4723 (2012).

  48. Edelstein, A. D. et al. Advanced methods of microscope control using μManager software. J. Biol. Methods 1, e10 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

Q.L. thanks Z. Lyu for his help in the meta-hologram characterization. We acknowledge funding from AFOSR MURI grants (FA9550-17-1-0002 and FA9550-21-1-0312). P.M.F. is a Chan Zuckerberg Biohub Investigator.

Author information

Authors and Affiliations

Authors

Contributions

Q.L. and M.L.B. conceived the research idea. Q.L. built the analytical model and performed the design, fabrication and characterization of metasurfaces with input from J.v.d.G. J.-H.S. performed the poly-Si deposition and diffraction efficiency measurement. A.K.W. designed and fabricated the microfluidic cavities. S.A.L., A.K.W. and Q.L. conducted the microfluidic integration experiment. All the authors contributed to writing the manuscript. M.L.B. supervised the project.

Corresponding author

Correspondence to Mark L. Brongersma.

Ethics declarations

Competing interests

Q.L., J.v.d.G., J.-H.S. and M.L.B. are inventors on three US patent provisional applications (63/2711343, 63/2711350 and 63/2711354) held and submitted by Stanford University that cover the use of metasurface optofluidics for the dynamic control of light fields. The other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Justus Ndukaife and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Figs. 1–8 and captions for Videos 1–3.

Supplementary Video 1

Modulation of an active meta-lens using HFE-7500 as a liquid cleaner.

Supplementary Video 2

Modulation of an active meta-lens using ethanol as a liquid cleaner.

Supplementary Video 3

Modulation of a metasurface digital number display. The video is sped up by 30 times for a better viewing experience.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Q., van de Groep, J., White, A.K. et al. Metasurface optofluidics for dynamic control of light fields. Nat. Nanotechnol. 17, 1097–1103 (2022). https://doi.org/10.1038/s41565-022-01197-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01197-y

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research