Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetically tunable and stable deep-ultraviolet birefringent optics using two-dimensional hexagonal boron nitride


Birefringence is a fundamental optical property that can induce phase retardation of polarized light. Tuning the birefringence of liquid crystals is a core technology for light manipulation in current applications in the visible and infrared spectral regions. Due to the strong absorption or instability of conventional liquid crystals in deep-ultraviolet light, tunable birefringence remains elusive in this region, notwithstanding its significance in diverse applications. Here we show a stable and birefringence-tunable deep-ultraviolet modulator based on two-dimensional hexagonal boron nitride. It has an extremely large optical anisotropy factor of 6.5 × 10−12 C2 J−1 m−1 that gives rise to a specific magneto-optical Cotton–Mouton coefficient of 8.0 × 106 T−2 m−1, which is about five orders of magnitude higher than other potential deep-ultraviolet-transparent media. The large coefficient, high stability (retention rate of 99.7% after 270 cycles) and wide bandgap of boron nitride collectively enable the fabrication of stable deep-ultraviolet modulators with magnetically tunable birefringence.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Magneto-birefringence effect of 2D h-BN suspension.
Fig. 2: Magnetic-field-induced alignment and magneto-birefringence of 2D h-BN inorganic LCs.
Fig. 3: Performance of the 2D h-BN inorganic LC-based DUV modulator.

Data availability

The data that support the findings of this study are available within the paper and the Supplementary Information. Other relevant data are available from the corresponding authors on reasonable request. Source data are provided with this paper.


  1. Mitchison, J. M. Birefringence of Amœbæ. Nature 166, 313–314 (1950).

    CAS  Article  Google Scholar 

  2. Beaufort, L., Barbarin, N. & Gally, Y. Optical measurements to determine the thickness of calcite crystals and the mass of thin carbonate particles such as coccoliths. Nat. Protoc. 9, 633–642 (2014).

    CAS  Article  Google Scholar 

  3. Savage, N. Digital spatial light modulators. Nat. Photonics 3, 170–172 (2009).

    CAS  Article  Google Scholar 

  4. Park, J., Lee, K. & Park, Y. Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve. Nat. Commun. 10, 1304 (2019).

    Article  Google Scholar 

  5. Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photonics 5, 343–348 (2011).

    CAS  Article  Google Scholar 

  6. Muheim, R., Phillips, J. B. & Åkesson, S. Polarized light cues underlie compass calibration in migratory songbirds. Science 313, 837–839 (2006).

    CAS  Article  Google Scholar 

  7. Demus, D. 100 years liquid crystal chemistry. Mol. Cryst. Liq. Cryst. Incorporating Nonlinear Opt. 165, 45–84 (1988).

    CAS  Article  Google Scholar 

  8. Wei, W.-S., Xia, Y., Ettinger, S., Yang, S. & Yodh, A. G. Molecular heterogeneity drives reconfigurable nematic liquid crystal drops. Nature 576, 433–436 (2019).

    CAS  Article  Google Scholar 

  9. Song, W., Kinloch, I. A. & Windle, A. H. Nematic liquid crystallinity of multiwall carbon nanotubes. Science 302, 1363–1363 (2003).

    CAS  Article  Google Scholar 

  10. Shen, T.-Z., Hong, S.-H. & Song, J.-K. Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient. Nat. Mater. 13, 394–399 (2014).

    CAS  Article  Google Scholar 

  11. Woltman, S. J., Jay, G. D. & Crawford, G. P. Liquid-crystal materials find a new order in biomedical applications. Nat. Mater. 6, 929–938 (2007).

    CAS  Article  Google Scholar 

  12. Kneissl, M., Seong, T.-Y., Han, J. & Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics 13, 233–244 (2019).

    CAS  Article  Google Scholar 

  13. Kubota, Y., Watanabe, K., Tsuda, O. & Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317, 932–934 (2007).

    CAS  Article  Google Scholar 

  14. Taniyasu, Y., Kasu, M. & Makimoto, T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441, 325–328 (2006).

    CAS  Article  Google Scholar 

  15. Tudi, A., Han, S., Yang, Z. & Pan, S. Potential optical functional crystals with large birefringence: recent advances and future prospects. Coord. Chem. Rev. 459, 214380 (2022).

    CAS  Article  Google Scholar 

  16. Xu, Z. & Sadler, B. M. Ultraviolet communications: potential and state-of-the-art. IEEE Commun. Mag. 46, 67–73 (2008).

    Google Scholar 

  17. Khan, A., Balakrishnan, K. & Katona, T. Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photonics 2, 77–84 (2008).

    CAS  Article  Google Scholar 

  18. Wen, C.-H., Gauza, S. & Wu, S.-T. Ultraviolet stability of liquid crystals containing cyano and isothiocyanato terminal groups. Liq. Cryst. 31, 1479–1485 (2004).

    CAS  Article  Google Scholar 

  19. Lan, T., Ding, B. & Liu, B. Magneto-optic effect of two-dimensional materials and related applications. Nano Sel. 1, 298–310 (2020).

    Article  Google Scholar 

  20. Ding, B. et al. Giant magneto-birefringence effect and tuneable colouration of 2D crystal suspensions. Nat. Commun. 11, 3725 (2020).

    CAS  Article  Google Scholar 

  21. Ding, B. et al. Largely tunable magneto-coloration of monolayer 2D materials via size tailoring. ACS Nano 15, 9445–9452 (2021).

    Article  Google Scholar 

  22. Lan, T. et al. Collective behavior induced highly sensitive magneto-optic effect in 2D inorganic liquid crystals. J. Am. Chem. Soc. 143, 12886–12893 (2021).

    CAS  Article  Google Scholar 

  23. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    CAS  Article  Google Scholar 

  24. Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    CAS  Article  Google Scholar 

  25. Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    CAS  Article  Google Scholar 

  26. Segura, A. et al. Natural optical anisotropy of h-BN: highest giant birefringence in a bulk crystal through the mid-infrared to ultraviolet range. Phys. Rev. Mater. 2, 024001 (2018).

    CAS  Article  Google Scholar 

  27. Cassabois, G., Valvin, P. & Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 10, 262–266 (2016).

    CAS  Article  Google Scholar 

  28. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).

    CAS  Article  Google Scholar 

  29. Wang, M., He, L., Zorba, S. & Yin, Y. Magnetically actuated liquid crystals. Nano Lett. 14, 3966–3971 (2014).

    CAS  Article  Google Scholar 

  30. Eremin, A. et al. Peculiarities of the magneto-optical response in dispersions of anisometric pigment nano-particles. RSC Adv. 6, 80666–80669 (2016).

    CAS  Article  Google Scholar 

  31. Peterlin, A. & Stuart, H. A. Über den Einfluß der Rotationsbehinderung und der Anisotropie des inneren Feldes auf die Polarisation von Flüssigkeiten. Z. Angew. Phys. 113, 663–696 (1939).

    CAS  Google Scholar 

  32. Taylor, E. W. & Cramer, W. Birefringence of protein solutions and biological systems. I. Biophys. J. 3, 127–141 (1963).

    CAS  Article  Google Scholar 

  33. O’Konski, C. T., Yoshioka, K. & Orttung, W. H. Electric properties of macromolecules. IV. Determination of electric and optical parameters from saturation of electric birefringence in solutions. J. Phys. Chem. 63, 1558–1565 (1959).

    Article  Google Scholar 

  34. Jennings, B. R., Wilson, S. R. & Ridler, P. J. Magnetic birefringence of minerals. J. Colloid Interface Sci. 281, 368–376 (2005).

    CAS  Article  Google Scholar 

  35. Rah, Y., Jin, Y., Kim, S. & Yu, K. Optical analysis of the refractive index and birefringence of hexagonal boron nitride from the visible to near-infrared. Opt. Lett. 44, 3797–3800 (2019).

    CAS  Article  Google Scholar 

  36. Pakdel, A., Bando, Y. & Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 43, 934–959 (2014).

    CAS  Article  Google Scholar 

  37. Hong, J., Jin, C., Yuan, J. & Zhang, Z. Atomic defects in two-dimensional materials: from single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater. 29, 1606434 (2017).

    Article  Google Scholar 

  38. Li, J.-M. Robust 2D room-temperature dilute ferrimagnetism enhancement in freestanding ammoniated atom-thin [0001] h-BN nanoplates. ACS Appl. Mater. Interfaces 9, 39626–39634 (2017).

    CAS  Article  Google Scholar 

  39. Si, H. et al. Large-scale synthesis of few-layer F-BN nanocages with zigzag-edge triangular antidot defects and investigation of the advanced ferromagnetism. Nano Lett. 15, 8122–8128 (2015).

    CAS  Article  Google Scholar 

Download references


We acknowledge support by the National Natural Science Foundation of China (No. 51920105002, 52125309, 52188101, 51991343 and 51991340), the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2017ZT07C341), the Shenzhen Basic Research Project (No. WDZC20200819095319002 and JCYJ20190809180605522), the National Key R&D Program (2018YFA0307300) and the Bureau of Industry and Information Technology of Shenzhen for the ‘2017 Graphene Manufacturing Innovation Centre Project’ (No. 201901171523). We thank L. Qiu, J. Liu, Y. Hao, J. Tan, M. Liu, S. Lan, F. Cai, L. Dai, Z. Xie and N. Lei for discussions, sample fabrication and part of material characterization.

Author information

Authors and Affiliations



B.D., H-M.C. and B.L. designed and conceived the project. S.C., Y.X. and Y.P. prepared 2D h-BN materials. H.X., Y.X. and B.D. fabricated the devices and performed magneto-optical measurements. H.X., Z.H., B.D. and B.L. performed the material characterization. D.W., Y.X. and B.D. performed the magnetism characterization. Z.H., Y.X., T.L. and B.D. performed the theoretical calculations. B.D., H.X., Z.H., S.C., H-M.C. and B.L. analysed the data and wrote the paper with the input from all authors.

Corresponding authors

Correspondence to Baofu Ding, Hui-Ming Cheng or Bilu Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Guillaume Cassabois and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Tables 1–3 and Supplementary Figs. 1–16.

Supplementary Video 1

Magneto-optical switching of 2D h-BN LCs.

Supplementary Video 2

Alignment of 2D h-BN membrane in a magnetic field.

Supplementary Video 3

Magneto-optical DUV light modulation of 2D h-BN LCs.

Source data

Source Data Fig. 1

Source data for Fig. 1a–c.

Source Data Fig. 2

Source data for Fig. 2a,b,d,e.

Source Data Fig. 3

Source data for Fig. 3a,c–f.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Ding, B., Xu, Y. et al. Magnetically tunable and stable deep-ultraviolet birefringent optics using two-dimensional hexagonal boron nitride. Nat. Nanotechnol. (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research