Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quenching the bandgap of two-dimensional semiconductors with a perpendicular electric field

Abstract

Perpendicular electric fields can tune the electronic band structure of atomically thin semiconductors. In bilayer graphene, which is an intrinsic zero-gap semiconductor, a perpendicular electric field opens a finite bandgap. So far, however, the same principle could not be applied to control the properties of a broader class of 2D materials because the required electric fields are beyond reach in current devices. To overcome this limitation, we design double ionic gated transistors that enable the application of large electric fields of up to 3 V nm−1. Using such devices, we continuously suppress the bandgap of few-layer semiconducting transition metal dichalcogenides (that is, bilayer to heptalayer WSe2) from 1.6 V to zero. Our results illustrate an excellent level of control of the band structure of 2D semiconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Double ionic gated field-effect transistors.
Fig. 2: Electrical characteristics of a double-gated 2L WSe2 transistor.
Fig. 3: Bandgap evolution as a function of the electric field.
Fig. 4: Quenching the gap in 3L, 4L and 5L WSe2 devices.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available free of charge from the Yareta repository of the University of Geneva at https://doi.org/10.26037/yareta:txap4ayzibcm5hcipvvzufx72a. This repository contains the data presented in all figures, including those in the Supplementary Information.

References

  1. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  2. Oostinga, J. B., Heersche, H. B., Liu, X., Morpurgo, A. F. & Vandersypen, L. M. K. Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7, 151–157 (2008).

    Article  CAS  Google Scholar 

  3. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  CAS  Google Scholar 

  4. Mak, K. F., Lui, C. H., Shan, J. & Heinz, T. F. Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009).

    Article  Google Scholar 

  5. Ramasubramaniam, A., Naveh, D. & Towe, E. Tunable band gaps in bilayer transition-metal dichalcogenides. Phys. Rev. B 84, 205325 (2011).

    Article  Google Scholar 

  6. Drummond, N. D., Zólyomi, V. & Fal’ko, V. I. Electrically tunable band gap in silicene. Phys. Rev. B 85, 075423 (2012).

    Article  Google Scholar 

  7. Chu, T., Ilatikhameneh, H., Klimeck, G., Rahman, R. & Chen, Z. Electrically tunable bandgaps in bilayer MoS2. Nano Lett. 15, 8000–8007 (2015).

    Article  CAS  Google Scholar 

  8. Kim, J. et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349, 723–726 (2015).

    Article  CAS  Google Scholar 

  9. Dai, X., Li, W., Wang, T., Wang, X. & Zhai, C. Bandstructure modulation of two-dimensional WSe2 by electric field. J. Appl. Phys. 117, 084310 (2015).

    Article  Google Scholar 

  10. Deng, B. et al. Efficient electrical control of thin-film black phosphorus bandgap. Nat. Commun. 8, 14474 (2017).

    Article  CAS  Google Scholar 

  11. Overweg, H. et al. Electrostatically induced quantum point contacts in bilayer graphene. Nano Lett. 18, 553–559 (2018).

    Article  CAS  Google Scholar 

  12. Chen, P. et al. Band evolution of two-dimensional transition metal dichalcogenides under electric fields. Appl. Phys. Lett. 115, 083104 (2019).

    Article  Google Scholar 

  13. Yuan, H. et al. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater. 19, 1046–1053 (2009).

    Article  CAS  Google Scholar 

  14. Fujimoto, T. & Awaga, K. Electric-double-layer field-effect transistors with ionic liquids. Phys. Chem. Chem. Phys. 15, 8983–9006 (2013).

    Article  CAS  Google Scholar 

  15. Bisri, S. Z., Shimizu, S., Nakano, M. & Iwasa, Y. Endeavor of iontronics: from fundamentals to applications of ion-controlled electronics. Adv. Mater. 29, 1607054 (2017).

    Article  Google Scholar 

  16. Schmidt, E., Shi, S., Ruden, P. P. & Frisbie, C. D. Characterization of the electric double layer formation dynamics of a metal/ionic liquid/metal structure. ACS Appl. Mater. Interfaces 8, 14879–14884 (2016).

    Article  CAS  Google Scholar 

  17. Philippi, M., Gutiérrez-Lezama, I., Ubrig, N. & Morpurgo, A. F. Lithium-ion conducting glass ceramics for electrostatic gating. Appl. Phys. Lett. 113, 033502 (2018).

    Article  Google Scholar 

  18. Zhang, H., Berthod, C., Berger, H., Giamarchi, T. & Morpurgo, A. F. Band filling and cross quantum capacitance in ion-gated semiconducting transition metal dichalcogenide monolayers. Nano Lett. 19, 8836–8845 (2019).

    Article  CAS  Google Scholar 

  19. Gutiérrez-Lezama, I., Ubrig, N., Ponomarev, E. & Morpurgo, A. F. Ionic gate spectroscopy of 2D semiconductors. Nat. Rev. Phys. 3, 508–519 (2021).

    Article  Google Scholar 

  20. Yamada, Y. et al. Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332, 1065–1067 (2011).

    Article  CAS  Google Scholar 

  21. Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

    Article  CAS  Google Scholar 

  22. Wang, S., Ha, M., Manno, M., Frisbie, C. D. & Leighton, C. Hopping transport and the Hall effect near the insulator–metal transition in electrochemically gated poly(3-hexylthiophene) transistors. Nat. Commun. 3, 1210 (2012).

    Article  Google Scholar 

  23. Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).

    Article  CAS  Google Scholar 

  24. Costanzo, D., Jo, S., Berger, H. & Morpurgo, A. F. Gate-induced superconductivity in atomically thin MoS2 crystals. Nat. Nanotechnol. 11, 339–344 (2016).

    Article  CAS  Google Scholar 

  25. Leighton, C. Electrolyte-based ionic control of functional oxides. Nat. Mater. 18, 13–18 (2019).

    Article  CAS  Google Scholar 

  26. Ponomarev, E., Ubrig, N., Gutiérrez-Lezama, I., Berger, H. & Morpurgo, A. F. Semiconducting van der Waals interfaces as artificial semiconductors. Nano Lett. 18, 5146–5152 (2018).

    Article  CAS  Google Scholar 

  27. Reddy, B. A. et al. Synthetic semimetals with van der Waals interfaces. Nano Lett. 20, 1322–1328 (2020).

    Article  CAS  Google Scholar 

  28. Alam, M. H. et al. Lithium-ion electrolytic substrates for sub-1V high-performance transition metal dichalcogenide transistors and amplifiers. Nat. Commun. 11, 3203 (2020).

    Article  CAS  Google Scholar 

  29. Nakajima, K., Katoh, T., Inda, Y. & Hoffman, B. Lithium Ion Conductive Glass Ceramics: Properties and Application in Lithium Metal Batteries (Ohara Corporation, 2010); http://oharacorp.com/pdf/ohara-presentation-ornl-symposium-10-08-2010.pdf

  30. Zheliuk, O. et al. Josephson coupled Ising pairing induced in suspended MoS2 bilayers by double-side ionic gating. Nat. Nanotechnol. 14, 1123–1128 (2019).

    Article  CAS  Google Scholar 

  31. Ji, H. et al. Thickness effect on low-power driving of MoS2 transistors in balanced double-gate fields. Nanotechnology 31, 255201 (2020).

    Article  CAS  Google Scholar 

  32. Wang, Y. et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550, 487–491 (2017).

    Article  CAS  Google Scholar 

  33. Zhang, F. et al. Electric-field induced structural transition in vertical MoTe2- and Mo1−xWxTe2-based resistive memories. Nat. Mater. 18, 55–61 (2019).

    Article  CAS  Google Scholar 

  34. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    Article  CAS  Google Scholar 

  35. Tong, Q. et al. Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys. 13, 356–362 (2017).

    Article  CAS  Google Scholar 

  36. Zhu, Q., Tu, M. W.-Y., Tong, Q. & Yao, W. Gate tuning from exciton superfluid to quantum anomalous Hall in van der Waals heterobilayer. Sci. Adv. 5, eaau6120 (2019).

    Article  Google Scholar 

  37. Marrazzo, A., Gibertini, M., Campi, D., Mounet, N. & Marzari, N. Prediction of a large-gap and switchable Kane–Mele quantum spin Hall insulator. Phys. Rev. Lett. 120, 117701 (2018).

    Article  Google Scholar 

  38. Kim, D., Lee, C., Jang, B. G., Kim, K. & Shim, J. H. Drastic change of magnetic anisotropy in Fe3GeTe2 and Fe4GeTe2 monolayers under electric field studied by density functional theory. Sci. Rep. 11, 17567 (2021).

    Article  CAS  Google Scholar 

  39. Xu, C. et al. Electric-field switching of magnetic topological charge in type-I multiferroics. Phys. Rev. Lett. 125, 037203 (2020).

    Article  CAS  Google Scholar 

  40. Wang, S. et al. Tunable Schottky barrier in graphene/graphene-like germanium carbide van der Waals heterostructure. Sci. Rep. 9, 5208 (2019).

    Article  Google Scholar 

  41. Wang, J. et al. Electric field-tunable structural phase transitions in monolayer tellurium. ACS Omega 5, 18213–18217 (2020).

    Article  CAS  Google Scholar 

  42. Ke, C. et al. Tuning the electronic, optical, and magnetic properties of monolayer GaSe with a vertical electric field. Phys. Rev. Appl. 9, 044029 (2018).

    Article  CAS  Google Scholar 

  43. Weintrub, B. I., Hsieh, Y.-L., Kirchhof, J. N. & Bolotin, K. I. Generating extreme electric fields in 2D materials by dual ionic gating. Preprint at https://arxiv.org/abs/2108.05797 (2021).

  44. Zomer, P. J., Guimarães, M. H. D., Brant, J. C., Tombros, N. & van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).

    Article  Google Scholar 

  45. Domaretskiy, D., Ubrig, N., Gutiérrez-Lezama, I., Tran, M. K. & Morpurgo, A. F. Identifying atomically thin crystals with diffusively reflected light. 2D Mater. 8, 045016 (2021).

    Article  CAS  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  47. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  48. Giannozzi, P. et al. Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article  CAS  Google Scholar 

  49. Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    Article  Google Scholar 

  50. van Setten, M. J. et al. The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).

    Article  Google Scholar 

  51. Sohier, T., Calandra, M. & Mauri, F. Density functional perturbation theory for gated two-dimensional heterostructures: theoretical developments and application to flexural phonons in graphene. Phys. Rev. B 96, 075448 (2017).

    Article  Google Scholar 

  52. Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32, 165902 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Ferreira for technical support. A.F.M. acknowledges financial support from the Swiss National Science Foundation (Division II) and from the EU Graphene Flagship project. M.G. acknowledges support from the Italian Ministry for University and Research through the Levi-Montalcini programme.

Author information

Authors and Affiliations

Authors

Contributions

D.D., M.P., N.U. and I.G.-L. fabricated the devices and carried out the experiments. D.D., M.P., I.G.-L. and A.F.M. analysed the experimental data. M.G. performed the first-principles simulations. I.G.-L. supervised the experimental work, and A.F.M. conceived and directed the research. All authors participated in preparing the manuscript.

Corresponding author

Correspondence to Alberto F. Morpurgo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Notes 1–8 and Figs. 1–13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domaretskiy, D., Philippi, M., Gibertini, M. et al. Quenching the bandgap of two-dimensional semiconductors with a perpendicular electric field. Nat. Nanotechnol. 17, 1078–1083 (2022). https://doi.org/10.1038/s41565-022-01183-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01183-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing