Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fischer–Tropsch synthesis to olefins boosted by MFI zeolite nanosheets

Abstract

Catalytic reactions are severely restricted by the strong adsorption of product molecules on the catalyst surface, where promoting desorption of the product and hindering its re-adsorption benefit the formation of free sites on the catalyst surface for continuous substrate conversion1,2. A solution to this issue is constructing a robust nanochannel for the rapid escape of products. We demonstrate here that MFI zeolite crystals with a short b-axis of 90–110 nm and a finely controllable microporous environment can effectively boost the Fischer–Tropsch synthesis to olefins by shipping the olefin molecules. The ferric carbide catalyst (Na-FeCx) physically mixed with a zeolite promoter exhibited a CO conversion of 82.5% with an olefin selectivity of 72.0% at the low temperature of 260 °C. By contrast, Na-FeCx alone without the zeolite promoter is poorly active under equivalent conditions, and shows the significantly improved olefin productivity achieved through the zeolite promoter. These results show that the well-designed zeolite, as a promising promoter, significantly boosts Fischer–Tropsch synthesis to olefins by accelerating escape of the product from the catalyst surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic showing the strategy to boost the FTO via shifting the chemical equilibrium on the catalyst surface.
Fig. 2: Catalytic performance of the Na-FeCx/zeolite catalysts in the LT-FTO.
Fig. 3: Catalytic data for the Na-FeCx/zeolite catalysts in LT-FTO and ethene desorption DRIFT spectra over Na-FeCx/zeolite catalysts.
Fig. 4: Computational models, DFT calculations, MD simulations and the MSD of ethene.

Similar content being viewed by others

Data availability

The data that support the findings of this study are presented in the Letter and Supplementary Information, and are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Li, H. et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels. Science 367, 667–671 (2020).

    Article  CAS  Google Scholar 

  2. Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016).

    Article  CAS  Google Scholar 

  3. Ren, T., Patel, M. & Rlok, K. Olefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processes. Energy 31, 425–451 (2006).

    Article  CAS  Google Scholar 

  4. Snel, R. Olefins from syngas. Catal. Rev. Sci. Eng. 29, 361–445 (1987).

    Article  CAS  Google Scholar 

  5. Dry, M. E. The Fischer–Tropsch process: 1950–2000. Catal. Today 71, 227–241 (2002).

    Article  CAS  Google Scholar 

  6. Torres Galvis, H. M. & de Jong, K. P. Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal. 3, 2130–2149 (2013).

    Article  CAS  Google Scholar 

  7. Pan, X., Jiao, F., Miao, D. & Bao, X. Oxide–zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer–Tropsch synthesis. Chem. Rev. 121, 6588–6609 (2021).

    Article  CAS  Google Scholar 

  8. Zhou, W. et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO into hydrocarbon chemicals and fuels. Chem. Soc. Rev. 48, 3193–3228 (2019).

    Article  CAS  Google Scholar 

  9. Galvis, H. M. T. et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335, 835–838 (2012).

    Article  CAS  Google Scholar 

  10. Zhong, L. et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 538, 84–87 (2016).

    Article  CAS  Google Scholar 

  11. Jiao, F. et al. Selective conversion of syngas to light olefins. Science 351, 1065–1068 (2016).

    Article  CAS  Google Scholar 

  12. Cheng, K. et al. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon–carbon coupling. Angew. Chem. Int. Ed. 55, 4725–4728 (2016).

    Article  CAS  Google Scholar 

  13. Wang, P. et al. Synthesis of stable and low-CO2 selective ε-iron carbide Fischer–Tropsch catalysts. Sci. Adv. 4, eaau2947 (2018).

    Article  CAS  Google Scholar 

  14. Li, J. et al. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nat. Catal. 1, 787–793 (2018).

    Article  CAS  Google Scholar 

  15. Xu, Y. et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products. Science 371, 610–613 (2021).

    Article  CAS  Google Scholar 

  16. Soled, S., Iglesia, E. & Fiato, R. A. Activity and selectivity control in iron catalyzed Fischer–Tropsch synthesis. Catal. Lett. 7, 271–280 (1990).

    Article  CAS  Google Scholar 

  17. Shroff, M. D. et al. Activation of precipitated iron Fischer–Tropsch synthesis catalysts. J. Catal. 156, 185–207 (1995).

    Article  CAS  Google Scholar 

  18. Zhai, P. et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst. Angew. Chem. Int. Ed. 55, 9902–9907 (2016).

    Article  CAS  Google Scholar 

  19. Koeken, A. C. J., Torres Galvis, H. M., Davidian, T., Ruitenbeek, M. & de Jong, K. P. Suppression of carbon deposition in the iron-catalyzed production of lower olefins from synthesis gas. Angew. Chem. Int. Ed. 51, 7190–7193 (2012).

    Article  CAS  Google Scholar 

  20. Torres Galvis, H. M. et al. Iron particle size effects for direct production of lower olefins from synthesis gas. J. Am. Chem. Soc. 134, 16207–16215 (2012).

    Article  CAS  Google Scholar 

  21. Liu, Y., Chen, J. F., Bao, J. & Zhang, Y. Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas. ACS Catal. 5, 3905–3909 (2015).

    Article  CAS  Google Scholar 

  22. Lohitharn, N., Goodwin, J. G. Jr. & Lotero, E. Fe-based Fischer–Tropsch synthesis catalysts containing carbide-forming transition metal promoters. J. Catal. 255, 104–113 (2008).

    Article  CAS  Google Scholar 

  23. de Smit, E. & Weckhuysen, B. M. The renaissance of iron-based Fischer–Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chem. Soc. Rev. 37, 2758–2781 (2008).

    Article  CAS  Google Scholar 

  24. Jiao, F. et al. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate. Angew. Chem. Int. Ed. 57, 4692–4696 (2018).

    Article  CAS  Google Scholar 

  25. Zhu, Y. et al. Role of manganese oxide in syngas conversion to light olefins. ACS Catal. 7, 2800–2804 (2017).

    Article  CAS  Google Scholar 

  26. Liu, X. et al. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34. ACS Catal. 10, 8303–8314 (2020).

    Article  CAS  Google Scholar 

  27. Zhu, X. et al. Trimodal porous hierarchical SSZ-13 zeolite with improved catalytic performance in the methanol-to-olefins reaction. ACS Catal. 6, 2163–2177 (2016).

    Article  CAS  Google Scholar 

  28. Zhao, B. et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts. Chem 3, 323–333 (2017).

    Article  CAS  Google Scholar 

  29. Cheng, K. et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability. Chem 3, 334–347 (2017).

    Article  CAS  Google Scholar 

  30. Yang, J., Pan, X., Jiao, F., Li, J. & Bao, X. Direct conversion of syngas to aromatics. Chem. Commun. 53, 11146–11149 (2017).

    Article  CAS  Google Scholar 

  31. Botes, F. G. & Böhringer The addition of HZSM-5 to the Fischer–Tropsch process for improved gasoline production. Appl. Catal. A Gen. 267, 217–225 (2004).

    Article  CAS  Google Scholar 

  32. Gwagwa, X. Y. & van Steen, E. Migration of potassium in an Fe2O3/H-ZSM-5 composite catalyst. Chem. Eng. Technol. 32, 826–829 (2009).

    Article  CAS  Google Scholar 

  33. Karre, A. V., Kababji, A., Kugler, E. L. & Dadyburjor, D. B. Effect of addition of zeolite to iron-based activated-carbon-supported catalyst for Fischer–Tropsch synthesis in separate beds and mixed beds. Catal. Today 198, 280–288 (2012).

    Article  CAS  Google Scholar 

  34. Karre, A. V., Kababji, A., Kugler, E. L. & Dadyburjor, D. B. Effect of time on stream and temperature on upgraded products from Fischer–Tropsch synthesis when zeolite is added to iron-based activated-carbon-supported catalyst. Catal. Today 214, 82–89 (2013).

    Article  CAS  Google Scholar 

  35. Li, B. et al. In-situ crystallization route to nanorod-aggregated functional ZSM-5 microspheres. J. Am. Chem. Soc. 135, 1181–1184 (2013).

    Article  CAS  Google Scholar 

  36. Weber, J. L. et al. Effect of proximity and support material on deactivation of bifunctional catalysts for the conversion of synthesis gas to olefins and aromatics. Catal. Today 342, 161–166 (2020).

    Article  CAS  Google Scholar 

  37. Weber, J. L. et al. Conversion of synthesis gas to aromatics at medium temperature with a Fischer Tropsch and ZSM-5 dual catalyst bed. Catal. Today 369, 175–183 (2021).

    Article  CAS  Google Scholar 

  38. Wang, C. et al. Importance of zeolite wettability for selective hydrogenation of furfural over Pd@Zeolite catalysts. ACS Catal. 8, 474–481 (2018).

    Article  CAS  Google Scholar 

  39. Wang, C. et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J. Am. Chem. Soc. 141, 8482–8488 (2019).

    Article  CAS  Google Scholar 

  40. Im, J., Shin, H., Jang, H., Kim, H. & Choi, M. Maximizing the catalytic function of hydrogen spillover in platinum-encapsulated aluminosilicates with controlled nanostructures. Nat. Commun. 5, 3370 (2014).

    Article  CAS  Google Scholar 

  41. Wang, S. et al. Activationand spillover of hydrogen on sub-1 nm palladium nanoclusters confined within sodalite zeolite for the semi-hydrogenation of alkynes. Angew. Chem. Int. Ed. 58, 7668–7672 (2019).

    Article  CAS  Google Scholar 

  42. Niemantsverdriet, J. W., der Kraan, A. M. V., Dijk, W. L. W. & der Baan, H. S. V. Behavior of metallic iron catalysts during Fischer–Tropsch synthesis studied with Mössbauer spectroscopy, X-ray diffraction, carbon content determination, and reaction kinetic measurements. J. Phys. Chem. 84, 3363–3370 (1980).

    Article  CAS  Google Scholar 

  43. Li, S., Li, A., Krishnamoorthy, S. & Iglesia, E. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron based Fischer–Tropsch synthesis catalysts. Catal. Lett. 77, 197–205 (2001).

    Article  CAS  Google Scholar 

  44. Efremov, A. A. & Davydov, A. A. Infrared spectra of π-complexes of propylene and ethylene on TiO2. React. Kinet. Catal. Lett. 15, 327–331 (1980).

    Article  CAS  Google Scholar 

  45. Ji, W., Chen, Y., Shen, S., Li, S. & Wang, H. FTIR study of adsorption of CO, NO and C2H4 and reaction of CO + H2 on the well-dispersed FeOxγ-Al2O3 and FeOx/TiO2(a) catalysts. Appl. Surf. Sci. 99, 151–160 (1996).

    Article  CAS  Google Scholar 

  46. Leclerc, H. et al. Infrared study of the influence of reducible iron(III) metal sites on the adsorption of CO, CO2, propane, propene and propyne in the mesoporous metal–organic framework MIL-100. Phys. Chem. Chem. Phys. 13, 11748–11756 (2011).

    Article  CAS  Google Scholar 

  47. Li, M., Nawaz, M. A., Song, G., Zaman, W. Q. & Liu, D. Influential role of elemental migration in a composite iron–zeolite catalyst for the synthesis of aromatics from syngas. Ind. Eng. Chem. Res. 59, 9043–9054 (2020).

    Article  CAS  Google Scholar 

  48. Wang, T. et al. Sodium-mediated bimetallic Fe–Ni catalyst boosts stable and selective production of light aromatics over HZSM-5 zeolite. ACS Catal. 11, 3553–3574 (2021).

    Article  CAS  Google Scholar 

  49. Cnudde, P. et al. Experimental and theoretical evidence for the promotional effect of acid sites on the diffusion of alkenes through small-pore zeolites. Angew. Chem. Int. Ed. 60, 10016–10022 (2021).

    Article  CAS  Google Scholar 

  50. Smit, B. & Maesen, T. L. M. Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. Chem. Rev. 108, 4125–4184 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Chen for kind help in the transmission electron microscopy characterization. This work was supported by the National Key Research and Development Program of China (2021YFA1500404), the National Natural Science Foundation of China (U21B20101, 21932006, 22102143, 22032005 and 22125304) and the National Postdoctoral Program for Innovative Talents (BX20200291).

Author information

Authors and Affiliations

Authors

Contributions

C.W. and W.F. performed the catalyst preparation, characterization and catalytic tests. Z. Liu and A.Z. performed the theoretical calculations and wrote the corresponding part. H.L., L.L., H.Z., X.Q., S.X. and Y.W. participated in the catalyst characterization. Z. Liao and Y.Y. provided helpful discussion and compiled the process package. X.C. performed the X-ray photoelectron spectroscopy characterization. L.W. and F.-S.X. designed the study, analysed the data and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Liang Wang, Anmin Zheng or Feng-Shou Xiao.

Ethics declarations

Competing interests

This work has been protected by a Chinese patent with the application number 202110715110.6. The authors C.W., W.F., L.W. and F.-S.X. were involved in this patent. The other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Jingxiu Xie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Materials and experimental details, Supplementary Figs. 1–62, Tables 1–16 and references.

Source data

Source Data Fig. 2a

Source of the catalytic data in Fig. 2.

Source Data Fig. 3

Source of the catalytic data in Fig. 3.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Fang, W., Liu, Z. et al. Fischer–Tropsch synthesis to olefins boosted by MFI zeolite nanosheets. Nat. Nanotechnol. 17, 714–720 (2022). https://doi.org/10.1038/s41565-022-01154-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01154-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing