Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kinetic and energetic insights into the dissipative non-equilibrium operation of an autonomous light-powered supramolecular pump

Abstract

Natural and artificial autonomous molecular machines operate by constantly dissipating energy coming from an external source to maintain a non-equilibrium state. Quantitative thermodynamic characterization of these dissipative states is highly challenging as they exist only as long as energy is provided. Here we report on the detailed physicochemical characterization of the dissipative operation of a supramolecular pump. The pump transduces light energy into chemical energy by bringing self-assembly reactions to non-equilibrium steady states. The composition of the system under light irradiation was followed in real time by 1H NMR for four different irradiation intensities. The experimental composition and photon flow were then fed into a theoretical model describing the non-equilibrium dissipation and the energy storage at the steady state. We quantitatively probed the relationship between the light energy input and the deviation of the dissipative state from thermodynamic equilibrium in this artificial system. Our results provide a testing ground for newly developed theoretical models for photoactivated artificial molecular machines operating away from thermodynamic equilibrium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simplified energy diagrams of operation of the pump and molecular structures of the components.
Fig. 2: Operative reaction network of the supramolecular pump.
Fig. 3: Time-dependent concentration profiles of complexed Z-2+.
Fig. 4: Dependence of the kinetic and thermodynamic parameters on the photon flow.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions are present in the main text and/or the Supplementary Information. Additional data related to this paper may be requested from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    Article  CAS  Google Scholar 

  2. Goodsell, D. S. The Machinery of Life (Copernicus, 2009).

  3. Solìs Muñana, P. et al. Substrate-induced self-assembly of cooperative catalysts. Angew. Chem. Int. Ed. 57, 16469–16474 (2018).

    Article  CAS  Google Scholar 

  4. Yang, S. et al. Chemical fueling enables molecular complexification of self-replicators. Angew. Chem. Int. Ed. 60, 11344–11349 (2021).

    Article  CAS  Google Scholar 

  5. Boekhoven, J. et al. Dissipative self-assembly of a molecular gelator by using a chemical fuel. Angew. Chem. Int. Ed. 49, 4825–4828 (2010).

    Article  CAS  Google Scholar 

  6. Wilson, M. R. et al. An autonomous chemically fueled small-molecule motor. Nature 534, 235–240 (2016).

    Article  CAS  Google Scholar 

  7. Borsley, S., Kreidt, E., Leigh, D. A. & Robert, B. M. W. Autonomous fuelled directional rotation about a covalent single bond. Nature 604, 80–85 (2022).

    Article  CAS  Google Scholar 

  8. Amano, S., Fielden, S. D. P. & Leigh, D. A. A catalysis-driven artificial molecular pump. Nature 594, 529–534 (2021).

    Article  CAS  Google Scholar 

  9. Cheng, C. et al. An artificial molecular pump. Nat. Nanotechnol. 10, 547–553 (2015).

    Article  CAS  Google Scholar 

  10. Qiu, Y. et al. A precise polyrotaxane synthesizer. Science 368, 1247–1253 (2020).

    Article  CAS  Google Scholar 

  11. Astumian, R. D. Optical vs. chemical driving for molecular machines. Faraday Discuss. 195, 583–597 (2016).

    Article  CAS  Google Scholar 

  12. Kathan, M. & Hecht, S. Photoswitchable molecules as key ingredients to drive systems away from the global thermodynamic minimum. Chem. Soc. Rev. 46, 5536–5550 (2017).

    Article  CAS  Google Scholar 

  13. Baroncini, M., Silvi, S. & Credi, A. Photo- and redox-driven artificial molecular motors. Chem. Rev. 120, 200–268 (2020).

    Article  CAS  Google Scholar 

  14. Feringa, B. L. The art of building small: from molecular switches to motors (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017).

    Article  CAS  Google Scholar 

  15. Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat. Nanotechnol. 10, 70–75 (2015).

    Article  CAS  Google Scholar 

  16. Ceroni, P., Credi, A. & Venturi, M. Light to investigate (read) and operate (write) molecular devices and machines. Chem. Soc. Rev. 43, 4068–4083 (2014).

    Article  CAS  Google Scholar 

  17. Foy, J. T. et al. Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotechnol. 12, 540–545 (2017).

    Article  CAS  Google Scholar 

  18. Ikegami, T., Kageyama, Y., Obara, K. & Takeda, S. Dissipative and autonomous square-wave self-oscillation of a macroscopic hybrid self-assembly under continuous light irradiation. Angew. Chem. Int. Ed. 55, 8239–8243 (2016).

    Article  CAS  Google Scholar 

  19. Herder, M. & Lehn, J.-M. The photodynamic covalent bond: sensitized alkoxyamines as a tool to shift reaction networks out-of-equilibrium using light energy. J. Am. Chem. Soc. 140, 7647–7657 (2018).

    Article  CAS  Google Scholar 

  20. Greb, L., Eichhçfer, A. & Lehn, J.-M. Synthetic molecular motors: thermal N inversion and directional photoinduced C=N bond rotation of camphorquinone imines. Angew. Chem. Int. Ed. 54, 14345–14348 (2015).

    Article  CAS  Google Scholar 

  21. Cheng, C., McGonigal, P. R., Stoddart, J. F. & Astumian, R. D. Design and synthesis of nonequilibrium systems. ACS Nano 9, 8672–8688 (2015).

    Article  CAS  Google Scholar 

  22. Merindol, R. & Walther, A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev. 46, 5588–5619 (2017).

    Article  CAS  Google Scholar 

  23. Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).

    Article  CAS  Google Scholar 

  24. van Rossum, S. A. P., Tena-Solsona, M., van Esch, J. H., Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).

    Article  Google Scholar 

  25. Das, K., Gabrielli, L. & Prins, L. J. Chemically fueled self-assembly in biology and chemistry. Angew. Chem. Int. Ed. 60, 20120–20143 (2021).

    Article  CAS  Google Scholar 

  26. Mattia, E. & Otto, S. Supramolecular systems chemistry. Nat. Nanotechnol. 10, 111–119 (2015).

    Article  CAS  Google Scholar 

  27. Sorrenti, A., Leira-Iglesias, J., Sato, A. & Hermans, T. M. Non-equilibrium steady states in supramolecular polymerization. Nat. Commun. 8, 15899 (2017).

    Article  CAS  Google Scholar 

  28. Geertsema, E. M., van der Molen, S. J., Martens, M. & Feringa, B. L. Optimizing rotary processes in synthetic molecular motors. Proc. Natl Acad. Sci. USA 106, 16919–16924 (2009).

    Article  CAS  Google Scholar 

  29. Wilcken, R., Gerwien, A., Huber, L. A., Dube, H. & Riedle, E. Quantitative in-situ NMR illumination for excitation and kinetic analysis of molecular motor intermediates. ChemPhotoChem 6, e202100232 (2022).

    CAS  Google Scholar 

  30. Corra, S. et al. Artificial supramolecular pumps powered by light. Chem. Eur. J. 27, 11076–11083 (2021).

    Article  CAS  Google Scholar 

  31. Canton, M. et al. Second-generation light-fueled supramolecular pump. J. Am. Chem. Soc. 143, 10890–10894 (2021).

    Article  CAS  Google Scholar 

  32. Nitschke, P., Lokesh, N. & Gschwind, R. M. Combination of illumination and high resolution NMR spectroscopy: key features and practical aspects, photochemical applications, and new concepts. Prog. Nucl. Magn. Reson. Spectrosc. 114, 86–134 (2019).

    Article  CAS  Google Scholar 

  33. Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Reversible photoswitching of rotaxane character and interplay of thermodynamic stability and kinetic lability in a self-assembling ring–axle molecular system. Chem. Eur. J. 16, 11580–11587 (2010).

    Article  CAS  Google Scholar 

  34. Blackmond, D. G. “If pigs could fly” chemistry: a tutorial on the principle of microscopic reversibility. Angew. Chem. Int. Ed. 48, 2648–2654 (2009).

    Article  CAS  Google Scholar 

  35. Ross, R. T. Some thermodynamics of photochemical systems. J. Chem. Phys. 45, 1–7 (1966).

    Article  CAS  Google Scholar 

  36. Porter, G. Transfer and storage of chemical and radiation potential. J. Chem. Soc., Faraday Trans. 2 79, 473–482 (1983).

    Article  CAS  Google Scholar 

  37. Penocchio, E., Rao, R. & Esposito, M. Nonequilibrium thermodynamics of light-induced reactions. J. Chem. Phys. 155, 114101 (2021).

    Article  CAS  Google Scholar 

  38. Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931).

    Article  CAS  Google Scholar 

  39. Astumian, R. D. & Bier, M. Mechanochemical coupling of the motion of molecular motors to ATP hydrolysis. Biophys. J. 70, 637–653 (1996).

    Article  CAS  Google Scholar 

  40. Astumian, R. D. Stochastic conformational pumping: a mechanism for free-energy transduction by molecules. Annu. Rev. Biophys. 40, 289–313 (2011).

    Article  CAS  Google Scholar 

  41. Kondepudi, D. & Prigogine, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, 1998).

  42. Rao, R. & Esposito, M. Nonequilibrium thermodynamics of chemical reaction networks: wisdom from stochastic thermodynamics. Phys. Rev. X 6, 041064 (2016).

    Google Scholar 

  43. Demirel, Y. & Gerbaud, V. in Nonequilibrium Thermodynamics 4th edn, Ch. 8 (Elsevier, 2019).

  44. Lehn, J.-M. Perspectives in chemistry—aspects of adaptive chemistry and materials. Angew. Chem. Int. Ed. 54, 3276–3289 (2015).

    Article  CAS  Google Scholar 

  45. Ries, H. & McEvoy, A. J. Chemical potential and temperature of light. J. Photochem. Photobiol. A 59, 11–18 (1991).

    Article  CAS  Google Scholar 

  46. Penocchio, E., Rao, R. & Esposito, M. Thermodynamic efficiency of dissipative chemistry. Nat. Commun. 10, 3865 (2019).

    Article  CAS  Google Scholar 

  47. Amano, S. et al. Insights from an information thermodynamics analysis of a synthetic molecular motor. Nat. Chem. https://doi.org/10.1038/s41557-022-00899-z (2022).

    Article  Google Scholar 

  48. Sabatino, A., Penocchio, E., Ragazzon, G., Credi, A. & Frezzato, D. Individual-molecule perspective analysis of chemical reaction networks: the case of a light-driven supramolecular pump. Angew. Chem. Int. Ed. 58, 14341–14348 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the EU (H2020 ERC AdG 692981 and ERC-2015-CoG n. 681456) and the Ministero dell’Università e della Ricerca (PRIN 20173L7W8K and 201732PY3X, FARE R16S9XXKX3) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

S.C. and J.G. synthesized the compounds. M.T.B., S.C., S.S. and M.B. designed and performed the kinetic experiments and analysed the data. S.C. carried out numerical simulations. E.P. and M.E. performed the thermodynamic analysis. A.C. and S.C. wrote the manuscript with input from all authors. All authors discussed the results and commented on the manuscript. A.C. conceived the project and directed the research.

Corresponding author

Correspondence to Alberto Credi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Tables 1–8, Discussion and equations.

Source data

Source Data Fig. 3

Mole fractions of Z complex from time-dependent NMR measurements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corra, S., Bakić, M.T., Groppi, J. et al. Kinetic and energetic insights into the dissipative non-equilibrium operation of an autonomous light-powered supramolecular pump. Nat. Nanotechnol. 17, 746–751 (2022). https://doi.org/10.1038/s41565-022-01151-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01151-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing