Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanomaterials for carbon dioxide conversion at industrial scale

Subjects

Using our company’s CO2 electrolysers as a model, we describe the challenges involved in incorporating nanomaterial catalysts into industrial-scale electrolysers and suggest ways to more efficiently realize the performance improvements of academic-scale novel nanomaterials at industrial scales.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: CO2 electrolyser.

References

  1. Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    CAS  Article  Google Scholar 

  2. Huang, J. & Buonsanti, R. Chem. Mater. 31, 13–25 (2019).

    CAS  Article  Google Scholar 

  3. Nitopi, S. et al. Chem. Rev. 119, 7610–7672 (2019).

    CAS  Article  Google Scholar 

  4. Fan, L. et al. Sci. Adv. 6, eaay3111 (2020).

    CAS  Article  Google Scholar 

  5. Zhao, S., Jin, R. & Jin, R. ACS Energy Lett. 3, 452–462 (2018).

    CAS  Article  Google Scholar 

  6. Kuhl, K. P., Cave, E. R. & Leonard, G. US patent 20,220,010,437 (2022).

  7. Kuhl, K. P. et al. US patent 20,210,395,908 (2021).

  8. Masel, R. I. et al. Nat. Nanotechnol. 16, 118–128 (2021).

    CAS  Article  Google Scholar 

  9. Jouny, M., Luc, W. & Jiao, F. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    CAS  Article  Google Scholar 

  10. Verma, S., Kim, B., Jhong, H.-R. M., Ma, S. & Kenis, P. J. A. ChemSusChem 9, 1972–1979 (2016).

    CAS  Article  Google Scholar 

  11. Nwabara, U. O., Cofell, E. R., Verma, S., Negro, E. & Kenis, P. J. A. ChemSusChem 13, 855–875 (2020).

    CAS  Article  Google Scholar 

  12. Wang, M. et al. ACS Appl. Energy Mater. 2, 6417–6427 (2019).

    Article  Google Scholar 

  13. Xie, M. et al. Membranes 11, 879 (2021).

    CAS  Article  Google Scholar 

  14. Suominen, M. & Kallio, T. ChemElectroChem 8, 2397–2406 (2021).

    CAS  Article  Google Scholar 

  15. Yu, P. T. et al. Carbon-Support Requirements for Highly Durable Fuel Cell Operation Ch. 2 (Springer, 2009).

  16. Gawande, M. B. et al. Chem. Rev. 116, 3722–3811 (2016).

    CAS  Article  Google Scholar 

  17. Chen, X. et al. Nat. Catal. 4, 20–27 (2021).

    Article  Google Scholar 

  18. Han, Z., Kortlever, R., Chen, H.-Y., Peters, J. C. & Agapie, T. ACS Cent. Sci. 3, 853–859 (2017).

    CAS  Article  Google Scholar 

  19. Banerjee, S., Zhang, Z.-Q., Hall, A. S. & Thoi, V. S. ACS Catal. 10, 9907–9914 (2020).

    CAS  Article  Google Scholar 

  20. García de Arquer, F. P. et al. Science 367, 661–666 (2020).

    Article  Google Scholar 

  21. Mowbray, B. A. W., Dvorak, D. J., Taherimakhsousi, N. & Berlinguette, C. P. Energy Fuels 35, 19178–19184 (2021).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendra P. Kuhl.

Ethics declarations

Competing interests

The authors are employed and have shares in Twelve, a company commercializing CO2 electrolysis technology.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buckley, A.K., Ma, S., Huo, Z. et al. Nanomaterials for carbon dioxide conversion at industrial scale. Nat. Nanotechnol. 17, 811–813 (2022). https://doi.org/10.1038/s41565-022-01147-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01147-8

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research