Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atomic-scale friction between single-asperity contacts unveiled through in situ transmission electron microscopy

A Publisher Correction to this article was published on 08 June 2022

This article has been updated

Abstract

Friction and wear are detrimental to functionality and reduce the service life of products with mechanical elements. Here, we unveil the atomic-scale friction of a single tungsten asperity in real time through a high-resolution transmission electron microscopy investigation of a nanocontact in countermotion, induced through a piezo actuator. Molecular dynamics simulations provide insights into the sliding pathway of interface atoms and the dynamic strain/stress evolution at the interface. We observe a discrete stick–slip behaviour and an asynchronous process for the accumulation and dissipation of the strain energy together with the non-uniform motion of interface atoms. Our methodology allows for studying in situ atomic-friction phenomena and provides insights into friction phenomena at the atomic scale.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: In situ atomic observation of stick–slip behaviour between single-tungsten asperity nanocontacts.
Fig. 2: Discrete stick–slip behaviour between tungsten asperities revealed by MD simulations.
Fig. 3: In situ TEM observation of atomic friction with 11 contact atoms.
Fig. 4: Strain evolution on the top layer of the tip during friction.
Fig. 5: Dynamic evolution of shear stress field on the bottom layer of the substrate using MD simulation.

Data availability

All data needed to evaluate the conclusions have been included in the paper/or the Supplementary Materials. Source data are provided with this paper. Additional data related to this paper can be requested from the corresponding authors S.X.M. (sxm2@pitt.edu) or G.W. (guw8@pitt.edu).

Change history

References

  1. Achanta, S. & Celis, J.-P. in Fundamentals of Friction and Wear on the Nanoscale (eds Gnecco, E. & Meyer, E.) 631–656 (Springer, 2015).

  2. Jacobs, T. D. B., Greiner, C., Wahl, K. J. & Carpick, R. W. Insights into tribology from in situ nanoscale experiments. MRS Bull. 44, 478–486 (2019).

    Article  Google Scholar 

  3. Park, J. Y. & Salmeron, M. Fundamental aspects of energy dissipation in friction. Chem. Rev. 114, 677–711 (2014).

    CAS  Article  Google Scholar 

  4. Mate, C. M., McClelland, G. M., Erlandsson, R. & Chiang, S. in Scanning Tunneling Microscopy (ed. Neddermeyer, H.) 226–229 (Springer, 1987).

  5. Fujisawa, S. et al. The two-dimensional stick-slip phenomenon with atomic resolution. Nanotechnology 4, 138–142 (1993).

    Article  Google Scholar 

  6. Bennewitz, R. et al. Atomic-scale stick-slip processes on Cu(111). Phys. Rev. B 60, R11301–R11304 (1999).

    CAS  Article  Google Scholar 

  7. Liu, X.-Z. et al. Dynamics of atomic stick-slip friction examined with atomic force microscopy and atomistic simulations at overlapping speeds. Phys. Rev. Lett. 114, 146102 (2015).

    Article  CAS  Google Scholar 

  8. Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010).

    CAS  Article  Google Scholar 

  9. Hirano, M., Shinjo, K., Kaneko, R. & Murata, Y. Anisotropy of frictional forces in muscovite mica. Phys. Rev. Lett. 67, 2642–2645 (1991).

    CAS  Article  Google Scholar 

  10. Li, Q., Dong, Y., Martini, A. & Carpick, R. W. Atomic friction modulation on the reconstructed Au (111) surface. Tribol. Lett. 43, 369–378 (2011).

    CAS  Article  Google Scholar 

  11. Socoliuc, A., Bennewitz, R., Gnecco, E. & Meyer, E. Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004).

    CAS  Article  Google Scholar 

  12. Merkle, A. P. & Marks, L. D. Liquid-like tribology of gold studied by in situ TEM. Wear 265, 1864–1869 (2008).

    CAS  Article  Google Scholar 

  13. Kizuka, T., Yamada, K., Deguchi, S., Naruse, M. & Tanaka, N. Cross-sectional time-resolved high-resolution transmission electron microscopy of atomic-scale contact and noncontact-type scannings on gold surfaces. Phys. Rev. B 55, R7398–R7401 (1997).

    CAS  Article  Google Scholar 

  14. Sato, T., Ishida, T., Jalabert, L. & Fujita, H. Real-time transmission electron microscope observation of nanofriction at a single Ag asperity. Nanotechnology 23, 505701 (2012).

    Article  CAS  Google Scholar 

  15. Oviedo, J. P. et al. In situ TEM characterization of shear-stress-induced interlayer sliding in the cross section view of molybdenum disulfide. ACS Nano 9, 1543–1551 (2014).

    Article  CAS  Google Scholar 

  16. Sato, T. et al. Real-time observation of slipping and rolling events in DLC wear nanoparticles. Nanotechnology 29, 325707 (2018).

    Article  CAS  Google Scholar 

  17. Jacobs, T. D. & Carpick, R. W. Nanoscale wear as a stress-assisted chemical reaction. Nat. Nanotechnol. 8, 108–112 (2013).

    CAS  Article  Google Scholar 

  18. Minor, A. M. & Dehm, G. Advances in in situ nanomechanical testing. MRS Bull. 44, 438–442 (2019).

    Article  Google Scholar 

  19. Wang, X. et al. Unstable twin in body-centered cubic tungsten nanocrystals. Nat. Commun. 11, 2497 (2020).

    CAS  Article  Google Scholar 

  20. Li, S. et al. The evolving quality of frictional contact with graphene. Nature 539, 541–545 (2016).

    CAS  Article  Google Scholar 

  21. Mo, Y., Turner, K. T. & Szlufarska, I. Friction laws at the nanoscale. Nature 457, 1116–1119 (2009).

    CAS  Article  Google Scholar 

  22. So, M., Jacobsen, K. W. & Stoltze, P. Simulations of atomic-scale sliding friction. Phys. Rev. B 53, 2101–2113 (1996).

    Google Scholar 

  23. Dong, Y., Vadakkepatt, A. & Martini, A. Analytical models for atomic friction. Tribol. Lett. 44, 367–386 (2011).

    CAS  Article  Google Scholar 

  24. Sorensen, M. R., Brandbyge, M. & Jacobsen, K. W. Mechanical deformation of atomic-scale metallic contacts: Structure and mechanisms. Phys. Rev. B 57, 3283–3294 (1998).

    Article  Google Scholar 

  25. Zhong, L., Wang, J., Sheng, H., Zhang, Z. & Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512, 177–180 (2014).

    CAS  Article  Google Scholar 

  26. Hölscher, H., Schwarz, U., Zwörner, O. & Wiesendanger, R. Consequences of the stick-slip movement for the scanning force microscopy imaging of graphite. Phys. Rev. B 57, 2477–2481 (1998).

    Article  Google Scholar 

  27. Hölscher, H., Schirmeisen, A. & Schwarz, U. D. Principles of atomic friction: from sticking atoms to superlubric sliding. Phil. Trans. Roy. Soc. A 366, 1383–1404 (2008).

    Article  CAS  Google Scholar 

  28. Subramaniyan, A. K. & Sun, C. Continuum interpretation of virial stress in molecular simulations. Int. J. Solids Struct. 45, 4340–4346 (2008).

    Article  Google Scholar 

  29. Fujisawa, S., Kishi, E., Sugawara, Y. & Morita, S. Two-dimensionally quantized friction observed with two-dimensional frictional force microscope. Tribol. Lett. 1, 121–127 (1995).

    CAS  Article  Google Scholar 

  30. Dong, Y., Li, Q., Wu, J. & Martini, A. Friction, slip and structural inhomogeneity of the buried interface. Model. Simul. Mater. Sci. Eng. 19, 065003 (2011).

    Article  CAS  Google Scholar 

  31. Hurtado, J. A. & Kim, K.-S. Scale effects in friction of single–asperity contacts. I. From concurrent slip to single–dislocation–assisted slip. Proc. R. Soc. Lond. A 455, 3363–3384 (1999).

    CAS  Article  Google Scholar 

  32. Maugis, D. Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992).

    CAS  Article  Google Scholar 

  33. Luan, B. & Robbins, M. O. The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005).

    CAS  Article  Google Scholar 

  34. Zhang, S. et al. Tuning friction to a superlubric state via in-plane straining. Proc. Natl Acad. Sci. USA 116, 24452–24456 (2019).

    CAS  Article  Google Scholar 

  35. Hurtado, J. A. & Kim, K.-S. Scale effects in friction of single–asperity contacts. II. Multiple–dislocation–cooperated slip. Proc. R. Soc. Lond. A 455, 3385–3400 (1999).

    CAS  Article  Google Scholar 

  36. Krenn, C. R., Roundy, D., Morris, J. W. Jr & Cohen, M. L. Ideal strengths of bcc metals. Mater. Sci. Eng. A 319, 111–114 (2001).

    Article  Google Scholar 

  37. Trevethan, T., Latham, C. D., Heggie, M. I., Briddon, P. R. & Rayson, M. J. Vacancy diffusion and coalescence in graphene directed by defect strain fields. Nanoscale 6, 2978–2986 (2014).

    CAS  Article  Google Scholar 

  38. Wang, Z.-J., Ma, T.-B., Hu, Y.-Z., Xu, L. & Wang, H. Energy dissipation of atomic-scale friction based on one-dimensional Prandtl-Tomlinson model. Friction 3, 170–182 (2015).

    Article  Google Scholar 

  39. Cross, G. et al. Adhesion interaction between atomically defined tip and sample. Phys. Rev. Lett. 80, 4685–4688 (1998).

    CAS  Article  Google Scholar 

  40. Bylander, D. & Kleinman, L. Self-consistent relativistic calculation of the energy bands and cohesive energy of W. Phys. Rev. B 29, 1534–1539 (1984).

    CAS  Article  Google Scholar 

  41. Ehrlich, G. & Stolt, K. Surface diffusion. Annu. Rev. Phys. Chem. 31, 603–637 (1980).

    CAS  Article  Google Scholar 

  42. Kim, S. Y., Lee, I.-H. & Jun, S. Transition-pathway models of atomic diffusion on fcc metal surfaces. I. Flat surfaces. Phys. Rev. B 76, 245407 (2007).

    Article  CAS  Google Scholar 

  43. Ambrosetti, A. & Silvestrelli, P. L. Cohesive properties of noble metals by van der Waals-corrected density functional theory: Au, Ag, and Cu as case studies. Phys. Rev. B 94, 045124 (2016).

    Article  CAS  Google Scholar 

  44. Vairis, A. & Frost, M. High frequency linear friction welding of a titanium alloy. Wear 217, 117–131 (1998).

    CAS  Article  Google Scholar 

  45. Schwarz, U. D. A generalized analytical model for the elastic deformation of an adhesive contact between a sphere and a flat surface. J. Colloid Interface Sci. 261, 99–106 (2003).

    CAS  Article  Google Scholar 

  46. Gao, G., Cannara, R. J., Carpick, R. W. & Harrison, J. A. Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. Langmuir 23, 5394–5405 (2007).

    CAS  Article  Google Scholar 

  47. Ruths, M., Alcantar, N. & Israelachvili, J. Boundary friction of aromatic silane self-assembled monolayers measured with the surface forces apparatus and friction force microscopy. J. Phys. Chem. B 107, 11149–11157 (2003).

    CAS  Article  Google Scholar 

  48. Gosvami, N. N., Filleter, T., Egberts, P. & Bennewitz, R. Microscopic friction studies on metal surfaces. Tribol. Lett. 39, 19–24 (2010).

    CAS  Article  Google Scholar 

  49. Krylov, S. Y. & Frenken, J. W. Thermal contact delocalization in atomic scale friction: a multitude of friction regimes. New J. Phys. 9, 398 (2007).

    Article  Google Scholar 

  50. Dong, Y., Li, Q. & Martini, A. Molecular dynamics simulation of atomic friction: A review and guide. J. Vac Sci. Technol. A 31, 030801 (2013).

    Article  CAS  Google Scholar 

  51. Li, J. et al. Diffusive molecular dynamics and its application to nanoindentation and sintering. Phys. Rev. B 84, 054103 (2011).

    Article  CAS  Google Scholar 

  52. Wang, J. et al. Discrete shear band plasticity through dislocation activities in body-centered cubic tungsten nanowires. Sci. Rep. 8, 4574 (2018).

    Article  CAS  Google Scholar 

  53. Sun, S. et al. Atomistic mechanism of stress-induced combined slip and diffusion in sub-5 nanometer-sized Ag nanowires. ACS Nano 13, 8708–8716 (2019).

    CAS  Article  Google Scholar 

  54. Liu, E., Blanpain, B. & Celis, J.P. Calibration procedures for frictional measurements with a lateral force microscope. Wear 192, 141–150 (1996).

    CAS  Article  Google Scholar 

  55. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Article  Google Scholar 

  56. Daw, M. S. & Baskes, M. I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443–6453 (1984).

    CAS  Article  Google Scholar 

  57. Ding, Z., Zhou, S. & Zhao, Y. Hardness and fracture toughness of brittle materials: a density functional theory study. Phys. Rev. B 70, 184117 (2004).

    Article  CAS  Google Scholar 

  58. Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

S.X.M. acknowledges support from the National Science Foundation (NSF CMMI 1824816) through the University of Pittsburgh. G.W. acknowledges the computational resources provided by the University of Pittsburgh Center for Research Computing.

Author information

Authors and Affiliations

Authors

Contributions

S.X.M. conceived the project. X.W. designed the experiment and performed in situ TEM tests and associated result analysis. Y.H. contributed to the experiment design and the result discussion. S.T. contributed to the TEM observation. Z.L. and G.W. carried out MD simulations. X.W., Z.L., G.W. and S.X.M. wrote the manuscript with the contribution of all authors.

Corresponding authors

Correspondence to Guofeng Wang or Scott X. Mao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Three force components of the interface atoms in MD simulation with 7 contact atoms. (Fig. 2) When the interface atoms completed the second slipping along the zig-zag route, the accumulated stress along z-direction in the first slipping would release, leading to the drop of the friction force. In experiments, since the shear force was obtained by measuring shear strains of seven/eleven atoms along x-direction in contact, the effect from the stress release along z-direction on the friction force might not be noticed.

Extended Data Fig. 2

The friction process within one period in MD simulation. (a-g) The structure evolution of the single asperity W-W contacts during friction, corresponding to the points of numbers 1–7 in Fig. 2a.

Extended Data Fig. 3

Variation of normal force with the displacement of the tip in the experiment (Fig. 1). The error bars represent the standard deviation of the normal force.

Source data

Extended Data Fig. 4

Discrete stick-slip behavior between tungsten asperities revealed by molecular dynamics (MD) simulation (The width of the contact region is 11 atoms’ space). (a) The function of the lateral force with the sliding displacement of the tip. (b-h) The snapshots of the dynamic movement of atoms in the top layer of the tip with respect to the substrate. The cyan balls represent the atoms in the bottom of the substrate. Four selected atoms were colored in yellow, orange, red, dark respectively. (i) The motion traces of the selected four atoms marked by the broken circles within one friction period.

Extended Data Fig. 5

The shear strain evolutions measured from two selected atoms marked by 1 and 7 in Fig. 4 during friction within one period.

Source data

Extended Data Fig. 6

Dynamic evolution of shear stress field on the bottom layer of the substrate in MD simulation. (a-e) The evolution of σxy (σzy) distribution on the bottom layer of the substrate and the corresponding sequences are indicated by red Roman numbers in Extended Data Fig. 4a.

Extended Data Fig. 7

Variation of normal force with the displacement of the tip in the case with 11 contact atoms. The error bars represent the standard deviation of the normal force.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Discussion 1–3, Tables 1 and 2 and references.

Supplementary Video 1

In situ TEM observation of atomic friction.

Supplementary Video 2

In situ TEM observation of atomic friction containing 11 contact atoms.

Supplementary Video 3

Another in situ atomic friction test.

Supplementary Video 4

In situ TEM observation of contact between two tungsten asperities.

Source data

Source Data Fig. 1a

Statistical Source Data.

Source Data Fig. 3a

Statistical Source Data.

Source Data Extended Data Fig. 3

Statistical Source Data.

Source Data Extended Data Fig. 5

Statistical Source Data.

Source Data Extended Data Fig. 7

Statistical Source Data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, Z., He, Y. et al. Atomic-scale friction between single-asperity contacts unveiled through in situ transmission electron microscopy. Nat. Nanotechnol. 17, 737–745 (2022). https://doi.org/10.1038/s41565-022-01126-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01126-z

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research