Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Advancing osmotic power generation by covalent organic framework monolayer

Abstract

Osmotic power, also known as ‘blue energy’, is produced by mixing solutions of different salt concentrations, and represents a vast, sustainable and clean energy source. The efficiency of harvesting osmotic power is primarily determined by the transmembrane performance, which is in turn dependent on ion conductivity and selectivity towards positive or negative ions. Atomically or molecularly thin membranes with a uniform pore environment and high pore density are expected to possess an outstanding ion permeability and selectivity, but remain unexplored. Here we demonstrate that covalent organic framework monolayer membranes that feature a well-ordered pore arrangement can achieve an extremely low membrane resistivity and ultrahigh ion conductivity. When used as osmotic power generators, these membranes produce an unprecedented output power density over 200 W m−2 on mixing the artificial seawater and river water. This work opens up the application of porous monolayer membranes with an atomically precise structure in osmotic power generation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Shape and structure characterization of a COF monolayer membrane.
Fig. 2: Transmembrane ion current and voltage.
Fig. 3: Osmotic power generation in NaCl solution.
Fig. 4: Enhanced osmotic power generation in multivalent ion electrolytes.

Similar content being viewed by others

Data availability

All the data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. Pattle, R. E. Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature 174, 660–660 (1954).

    Article  CAS  Google Scholar 

  2. Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012).

    Article  CAS  Google Scholar 

  3. Siria, A., Bocquet, M. L. & Bocquet, L. New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 1, 0091 (2017).

    Article  CAS  Google Scholar 

  4. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article  CAS  Google Scholar 

  5. Xiao, K., Jiang, L. & Antonietti, M. Ion transport in nanofluidic devices for energy harvesting. Joule 3, 2364–2380 (2019).

    Article  CAS  Google Scholar 

  6. Zhang, Z., Wen, L. & Jiang, L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. https://doi.org/10.1038/s41578-021-00300-4 (2021).

  7. Shen, J., Liu, G. P., Han, Y. & Jin, W. Q. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).

    Article  CAS  Google Scholar 

  8. Macha, M., Marion, S., Nandigana, V. V. R. & Radenovic, A. 2D materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. 4, 588–605 (2019).

    Article  CAS  Google Scholar 

  9. Rollings, R. C., Kuan, A. T. & Golovchenko, J. A. Ion selectivity of graphene nanopores. Nat. Commun. 7, 11408 (2016).

    Article  CAS  Google Scholar 

  10. Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020).

    Article  CAS  Google Scholar 

  11. Feng, J. D. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016).

    Article  CAS  Google Scholar 

  12. Liu, X. et al. Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core–rim polycyclic aromatic hydrocarbons. Nat. Nanotechnol. 15, 307–312 (2020).

    Article  CAS  Google Scholar 

  13. Wang, H. et al. Blue energy conversion from holey-graphene-like membranes with a high density of subnanometer pores. Nano Lett. 20, 8634–8639 (2020).

    Article  CAS  Google Scholar 

  14. Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015).

    Article  CAS  Google Scholar 

  15. Graf, M. et al. Fabrication and practical applications of molybdenum disulfide nanopores. Nat. Protocols 14, 1130–1168 (2019).

    Article  CAS  Google Scholar 

  16. Cote, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  CAS  Google Scholar 

  17. Geng, K. Y. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).

    Article  CAS  Google Scholar 

  18. Yuan, S. S. et al. Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 48, 2665–2681 (2019).

    Article  CAS  Google Scholar 

  19. Lohse, M. S. & Bein, T. Covalent organic frameworks: structures, synthesis, and applications. Adv. Funct. Mater. 28, 1705553 (2018).

    Article  CAS  Google Scholar 

  20. Zhong, Y. et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science 366, 1379–1384 (2019).

    Article  CAS  Google Scholar 

  21. Sahabudeen, H. et al. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun. 7, 13461 (2016).

    Article  CAS  Google Scholar 

  22. Wang, L. et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12, 509–522 (2017).

    Article  CAS  Google Scholar 

  23. Qi, H. Y. et al. Near-atomic-scale observation of grain boundaries in a layer-stacked two-dimensional polymer. Sci. Adv. 6, eabb5976 (2020).

    Article  CAS  Google Scholar 

  24. Stein, D., Kruithof, M. & Dekker, C. Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 93, 035901 (2004).

    Article  CAS  Google Scholar 

  25. Duan, C. H. & Majumdar, A. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat. Nanotechnol. 5, 848–852 (2010).

    Article  CAS  Google Scholar 

  26. Siwy, Z., Heins, E., Harrell, C. C., Kohli, P. & Martin, C. R. Conical-nanotube ion-current rectifiers: the role of surface charge. J. Am. Chem. Soc. 126, 10850–10851 (2004).

    Article  CAS  Google Scholar 

  27. Walker, M. I. et al. Extrinsic cation selectivity of 2D membranes. ACS Nano 11, 1340–1346 (2017).

    Article  CAS  Google Scholar 

  28. Wang, L., Wang, Z., Patel, S. K., Lin, S. & Elimelech, M. Nanopore-based power generation from salinity gradient: why it is not viable. ACS Nano 15, 4093–4107 (2021).

    Article  CAS  Google Scholar 

  29. Green, Y., Park, S. & Yossifon, G. Bridging the gap between an isolated nanochannel and a communicating multipore heterogeneous membrane. Phys. Rev. E 91, 011002 (2015).

    Article  CAS  Google Scholar 

  30. Xiao, F. L. et al. A general strategy to simulate osmotic energy conversion in multi-pore nanofluidic systems. Mater. Chem. Front. 2, 935–941 (2018).

    Article  CAS  Google Scholar 

  31. Tsutsui, M. et al. Electric field interference and bimodal particle translocation in nano-integrated multipores. Nanoscale 11, 7547–7553 (2019).

    Article  CAS  Google Scholar 

  32. Vlassiouk, I., Smirnov, S. & Siwy, Z. Ionic selectivity of single nanochannels. Nano Lett. 8, 1978–1985 (2008).

    Article  CAS  Google Scholar 

  33. Fu, Y. J., Guo, X., Wang, Y. H., Wang, X. W. & Xue, J. M. An atomically-thin graphene reverse electrodialysis system for efficient energy harvesting from salinity gradient. Nano Energy 57, 783–790 (2019).

    Article  CAS  Google Scholar 

  34. Chen, J. J. et al. Ultrathin and robust silk fibroin membrane for high-performance osmotic energy conversion. ACS Energy Lett. 5, 742–748 (2020).

    Article  CAS  Google Scholar 

  35. Zhang, Z. et al. Engineered asymmetric heterogeneous membrane: a concentration-gradient-driven energy harvesting device. J. Am. Chem. Soc. 137, 14765–14772 (2015).

    Article  CAS  Google Scholar 

  36. Yan, F., Yao, L. N., Chen, K. X., Yang, Q. & Su, B. An ultrathin and highly porous silica nanochannel membrane: toward highly efficient salinity energy conversion. J. Mater. Chem. A 7, 2385–2391 (2019).

    Article  CAS  Google Scholar 

  37. Gao, J. et al. High-performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 136, 12265–12272 (2014).

    Article  CAS  Google Scholar 

  38. Hong, S. et al. Two-dimensional Ti3C2Tx MXene membranes as nanofluidic osmotic power generators. ACS Nano 13, 8917–8925 (2019).

    Article  CAS  Google Scholar 

  39. Zhu, X. B. et al. Unique ion rectification in hypersaline environment: a high-performance and sustainable power generator system. Sci. Adv. 4, eaau1665 (2018).

    Article  CAS  Google Scholar 

  40. Li, R. R., Jiang, J. Q., Liu, Q. Q., Xie, Z. Q. & Zhai, J. Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation. Nano Energy 53, 643–649 (2018).

    Article  CAS  Google Scholar 

  41. Kwak, S. H. et al. Densely charged polyelectrolyte-stuffed nanochannel arrays for power generation from salinity gradient. Sci. Rep. 6, 26416 (2016).

    Article  CAS  Google Scholar 

  42. Hou, S. H. et al. Free-standing covalent organic framework membrane for high-efficiency salinity gradient energy conversion. Angew. Chem. Int. Ed. 60, 9925–9930 (2021).

    Article  CAS  Google Scholar 

  43. Li, C. et al. Large-scale, robust mushroom-shaped nanochannel array membrane for ultrahigh osmotic energy conversion. Sci. Adv. 7, eabg2183 (2021).

    Article  CAS  Google Scholar 

  44. Vermaas, D. A., Veerman, J., Saakes, M. & Nijmeijer, K. Influence of multivalent ions on renewable energy generation in reverse electrodialysis. Energ. Environ. Sci. 7, 1434–1445 (2014).

    Article  CAS  Google Scholar 

  45. Schaetzle, O. & Buisman, C. J. N. Salinity gradient energy: current state and new trends. Engineering 1, 164–166 (2015).

    Article  Google Scholar 

  46. Yao, Y. et al. High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nat. Sustain. 4, 138–146 (2021).

    Article  Google Scholar 

  47. Matsumoto, M. et al. Rapid, low temperature formation of imine-linked covalent organic frameworks catalyzed by metal triflates. J. Am. Chem. Soc. 139, 4999–5002 (2017).

    Article  CAS  Google Scholar 

  48. Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10, 181–188 (2012).

    Google Scholar 

  49. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2000).

    Article  CAS  Google Scholar 

  50. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB36000000, Z.T.), National Key Basic Research Program of China (2016YFA0200700, Z.T.), National Natural Science Foundation of China (21922504 and 52073069, L.L., and 92056204, 21890381 and 21721002, Z.T.), Frontier Science Key Project of the Chinese Academy of Sciences (QYZDJ-SSW-SLH038, Z.T.), Youth Innovation Promotion Association CAS (2018046, L.L.), China National Postdoctoral Program for Innovative Talents (BX20200102, J.Y.) and China Postdoctoral Science Foundation (2019M660583, J.Y.). K. Peng is acknowledged for focused ion beam (FIB) technical help.

Author information

Authors and Affiliations

Authors

Contributions

L.L., J.Y. and Z.T. conceived the research idea, designed all the experiments and wrote the manuscript. J.Y., P.L. and M.F. carried out the experimental measurements and data analysis with help from K.H., J.W. and Z.Y. B.T. performed the simulations and interpreted the simulation results. G.Z., Z.H., J.H., Q.F. and X.Q. joined the discussion of the data and gave useful suggestions. All the authors commented on the manuscript.

Corresponding authors

Correspondence to Lianshan Li or Zhiyong Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Soryong Chae and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Electrochemical measurement.

a, Scheme of the experimental setup. ZnTPP-COF monolayer membrane suspending on the SiNx/Si chip containing a 2 μm aperture is mounted on a Teflon disk, with both sides of the membrane in contact with aqueous solution. Ag/AgCl electrodes are applied to characterize the current-voltage response, where agarose salt bridges are used to eliminate the imbalanced redox potential at the electrode|electrolyte interface. b, Photograph of the disassembled electrochemical device. c, An empty SiNx aperture and a ZnTPP-COF monolayer membrane covered SiNx aperture.

Extended Data Fig. 2 Ion selectivity simulation.

a, The simulated 2D domain for PNP model. The pore length and diameter of each pore is 0.6 nm and 2 nm, respectively. In all the simulations, the concentration and potential of the central pore are used to calculate the current. b, c, Calculated steady-state concentration distribution of K+ (b) and Cl (c) near ZnTPP-COF monolayer membrane with a surface charge density of 4.1 mC m-2 under a salt gradient of 10 mM/0.1 mM, respectively. The higher concentration of Cl (counter-ions) compared with that of K+ (co-ions) in the whole pore region suggests the anion selectivity of the membrane. d, An electrostatic potential under salt gradient of 10 mM/0.1 mM builds up along the salinity gradient direction, owing to the selective transport of anions across the membrane.

Extended Data Fig. 3 Investigation on the pore-pore coupling effect.

a, Electrostatic potential showing different pore-pore coupling between the central pore and the 1-1, 2-2, 3-3, and 4-4 pores. b, Ion selectivity of the central pore upon coupling with the 1-1, 2-2, 3-3, and 4-4 pores. c, Osmotic current of the central pore upon coupling with the 1-1, 2-2, 3-3, and 4-4 pores. Surface charge density is set to be 4.1 mC m−2 under a salt gradient of 10 mM KCl/0.1 mM KCl.

Extended Data Fig. 4 Effect of interpore distance on the pore-pore coupling effect.

a, Electrostatic potential built under varied pore distance of 2.5 nm to 8.5 nm. b, Ion selectivity of the central pore when the interpore distance increases from 2.5 nm to 8.5 nm. c, Osmotic current of the central pore when the interpore distance increases from 2.5 nm to 8.5 nm. Surface charge density is set to be 4.1 mC m−2 under a salt gradient of 10 mM KCl/0.1 mM KCl. In the range of the interpore distance larger than 4.5 nm, small change in ion selectivity but obvious drop in osmotic current are discerned with the interpore distance decreasing (in other words, the pore density increasing), which reflects the effect of enhanced concentration polarization or ion transport resistance. On the contrary, in the range of the interpore distance smaller than 4.5 nm, a positive gain of pore-pore coupling effect comes to play a dominant role, namely, large increase in ion selectivity. This result reveals big enhancement of ion selectivity due to the strong pore-pore coupling. Meanwhile, the enhancement of osmotic current caused by the pore-pore coupling effect greatly compensates the decrease of osmotic current caused by concentration polarization or ion transport resistance, as the interpore distance decreases to below 4.5 nm (Extended Data Fig. 4c).

Extended Data Fig. 5 Atomic charge distribution of ZnTPP-COF (a), NiTPP-COF (b) and CuTPP-COF (c) from DFT calculation.

The metal centers show positive charge intensity in the order of ZnTPP-COF > NiTPP-COF > CuTPP-COF, which is consistent with the experimental trend on the positive surface charge density of these membranes. (orange: Zn, teal: Ni, green: Cu, blue: N, red: O, grey: C, white: H).

Extended Data Fig. 6 Osmotic power generation by NiTPP-COF and CuTPP-COF monolayer membranes.

Current-voltage curves (a, d) as well as current density and output power density on the external load resistance (b, e) of NiTPP-COF (a, b) and CuTPP-COF (d, e) monolayer membranes in the artificial seawater/artificial river water gradient system. Ios and Vos are the osmotic current and voltage, respectively. The current density-time curves of NiTPP-COF (c) and CuTPP-COF (f) monolayer membranes with electrolyte replenishing every 50 min operated under the condition of the maximum output power density.

Extended Data Table 1 Ionic species and their bulk diffusion coefficient
Extended Data Table 2 Ion composition in the artificial seawater46

Supplementary information

Supplementary Information

Supplementary Figs. 1–23, discussion and Tables 1–5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Tu, B., Zhang, G. et al. Advancing osmotic power generation by covalent organic framework monolayer. Nat. Nanotechnol. 17, 622–628 (2022). https://doi.org/10.1038/s41565-022-01110-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01110-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing