Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bilayer WSe2 as a natural platform for interlayer exciton condensates in the strong coupling limit


Exciton condensates (ECs) are macroscopic coherent states arising from condensation of electron–hole pairs1. Bilayer heterostructures, consisting of two-dimensional electron and hole layers separated by a tunnel barrier, provide a versatile platform to realize and study ECs2,3,4. The tunnel barrier suppresses recombination, yielding long-lived excitons5,6,7,8,9,10. However, this separation also reduces interlayer Coulomb interactions, limiting the exciton binding strength. Here, we report the observation of ECs in naturally occurring 2H-stacked bilayer WSe2. In this system, the intrinsic spin–valley structure suppresses interlayer tunnelling even when the separation is reduced to the atomic limit, providing access to a previously unattainable regime of strong interlayer coupling. Using capacitance spectroscopy, we investigate magneto-ECs, formed when partially filled Landau levels couple between the layers. We find that the strong-coupling ECs show dramatically different behaviour compared with previous reports, including an unanticipated variation of EC robustness with the orbital number, and find evidence for a transition between two types of low-energy charged excitations. Our results provide a demonstration of tuning EC properties by varying the constituent single-particle wavefunctions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Independent layer population in bilayer WSe2.
Fig. 2: EC formation and gap opening at LL crossings.
Fig. 3: Conditions for EC formation.
Fig. 4: Different types of charged excitations for different LLs.

Similar content being viewed by others

Data availability

Experimental data relevant to figures in the main text and data of numerical calculations are available at All other raw data are available from the corresponding author upon reasonable request.


  1. Blatt, J. M., Böer, K. W. & Brandt, W. Bose-Einstein condensation of excitons. Phys. Rev. 126, 1691–1692 (1962).

    Article  CAS  Google Scholar 

  2. Lozovik, Y. E. & Yudson, V. Feasibility of superfluidity of paired spatially separated electrons and holes; a new superconductivity mechanism. JETP Lett. 22, 274–276 (1975).

    Google Scholar 

  3. Snoke, D. Spontaneous Bose coherence of excitons and polaritons. Science 298, 1368–1372 (2002).

    Article  CAS  Google Scholar 

  4. Eisenstein, J. P. & MacDonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004).

    Article  CAS  Google Scholar 

  5. Butov, L. V., Gossard, A. C. & Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 418, 751–754 (2002).

    Article  CAS  Google Scholar 

  6. Eisenstein, J. P. Exciton condensation in bilayer quantum Hall systems. Annu. Rev. Condens. Matter Phys. 5, 159–181 (2014).

    Article  CAS  Google Scholar 

  7. Liu, X., Taniguchi, T., Watanabe, K., Halperin, B. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).

    Article  CAS  Google Scholar 

  8. Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).

    Article  CAS  Google Scholar 

  9. Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).

    Article  CAS  Google Scholar 

  10. Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).

    Article  CAS  Google Scholar 

  11. Halperin, B. I. & Rice, T. M. Possible anomalies at a semimetal-semiconductor transistion. Rev. Mod. Phys. 40, 755–766 (1968).

    Article  CAS  Google Scholar 

  12. Lu, Y. F. et al. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5. Nat. Commun. 8, 14408 (2017).

    Article  CAS  Google Scholar 

  13. Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017).

    Article  CAS  Google Scholar 

  14. Li, Z. et al. Possible excitonic insulating phase in quantum-confined Sb nanoflakes. Nano Lett. 19, 4960–4964 (2019).

    Article  CAS  Google Scholar 

  15. Jia, Y. et al. Evidence for a monolayer excitonic insulator. Nat. Phys 18, 87–93 (2022).

    Article  CAS  Google Scholar 

  16. Ataei, S. S., Varsano, D., Molinari, E. & Rontani, M. Evidence of ideal excitonic insulator in bulk MoS2 under pressure. Proc. Natl Acad. Sci. USA 118, e2010110118 (2021).

    Article  CAS  Google Scholar 

  17. Baldini, E. et al. The spontaneous symmetry breaking in Ta2NiSe5 is structural in nature. Preprint at arXiv (2020).

  18. Mazza, G. et al. Nature of symmetry breaking at the excitonic insulator transition: Ta2NiSe5. Phys. Rev. Lett. 124, 197601 (2020).

    Article  CAS  Google Scholar 

  19. Butov, L. Condensation and pattern formation in cold exciton gases in coupled quantum wells. J. Phys. Condens. Matter 16, R1577 (2004).

    Article  CAS  Google Scholar 

  20. Min, H., Bistritzer, R., Su, J.-J. & MacDonald, A. H. Room-temperature superfluidity in graphene bilayers. Phys. Rev. B 78, 121401 (2008).

    Article  Google Scholar 

  21. Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

    Article  CAS  Google Scholar 

  22. Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    Article  CAS  Google Scholar 

  23. Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature 488, 481–484 (2012).

    Article  CAS  Google Scholar 

  24. Liu, X. et al. Crossover between strongly coupled and weakly coupled exciton superfluids. Science 375, 205–209 (2022).

    Article  CAS  Google Scholar 

  25. Kim, Y., Moon, P., Watanabe, K., Taniguchi, T. & Smet, J. H. Odd integer quantum Hall states with interlayer coherence in twisted bilayer graphene. Nano Lett. 21, 4249–4254 (2021).

    Article  CAS  Google Scholar 

  26. Gong, Z. et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nat. Commun. 4, 2053 (2013).

    Article  Google Scholar 

  27. Zeng, H. et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608 (2013).

    Article  Google Scholar 

  28. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  CAS  Google Scholar 

  29. Fallahazad, B. et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).

    Article  Google Scholar 

  30. Pisoni, R. et al. Absence of interlayer tunnel coupling of k-valley electrons in bilayer MoS2. Phys. Rev. Lett. 123, 117702 (2019).

    Article  CAS  Google Scholar 

  31. Shi, Q. et al. Odd- and even-denominator fractional quantum Hall states in monolayer WSe2. Nat. Nanotechnol. 15, 569–573 (2020).

    Article  CAS  Google Scholar 

  32. Young, A. F. & Levitov, L. S. Capacitance of graphene bilayer as a probe of layer-specific properties. Phys. Rev. B 84, 085441 (2011).

    Article  Google Scholar 

  33. Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).

    Article  CAS  Google Scholar 

  34. Li, J. I. A. et al. Pairing states of composite fermions in double-layer graphene. Nat. Phys. 15, 898–903 (2019).

    Article  CAS  Google Scholar 

  35. Moon, K. et al. Spontaneous interlayer coherence in double-layer quantum Hall systems: charged vortices and Kosterlitz-Thouless phase transitions. Phys. Rev. B 51, 5138–5170 (1995).

    Article  CAS  Google Scholar 

  36. Sondhi, S. L., Karlhede, A., Kivelson, S. A. & Rezayi, E. H. Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies. Phys. Rev. B 47, 16419–16426 (1993).

    Article  CAS  Google Scholar 

  37. Wu, X.-G. & Sondhi, S. L. Skyrmions in higher Landau levels. Phys. Rev. B 51, 14725–14728 (1995).

    Article  CAS  Google Scholar 

  38. Zhang, Y.-H., Sheng, D. N. & Vishwanath, A. SU(4) chiral spin liquid, exciton supersolid, and electric detection in moiré bilayers. Phys. Rev. Lett. 127, 247701 (2021).

    Article  CAS  Google Scholar 

Download references


We thank E. Tutuc for helpful discussions and W. Coniglio and B. Pullum for help with experiments at the National High Magnetic Field Lab. This research is primarily supported by the US Department of Energy (DE-SC0016703). Synthesis of WSe2 (D.R., B.K., K.B.) was supported by the Columbia University Materials Science and Engineering Research Center, through National Science Foundation grants DMR-1420634 and DMR-2011738. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation cooperative agreement no. DMR-1157490 and the State of Florida. D.A.A. acknowledges support by the Swiss National Science Foundation and by the European Research Council (grant agreement no. 864597). Z.P. acknowledges support by the Leverhulme Trust Research Leadership Award RL-2019-015. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the Ministry of Education, Culture, Sports, Science and Technology, Japan (grant no. JPMXP0112101001) and Japan Society for the Promotion of Science KAKENHI (grant nos JP19H05790 and JP20H00354).

Author information

Authors and Affiliations



Q.S. fabricated the devices, performed the capacitance measurements and analysed the data. E.-M.S. fabricated devices and performed transport measurements that complement the capacitance data. Z.P. and D.A.A. provided theoretical input and performed the numerical calculations. D.R. and B.K. grew the WSe2 crystals under the supervision of J.H. and K.B.; K.W. and T.T. grew the hexagonal boron nitride crystals. Q.S., C.R.D., J.H., Z.P. and D.A.A. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Cory R. Dean.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Liang Fu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion including figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Shih, EM., Rhodes, D. et al. Bilayer WSe2 as a natural platform for interlayer exciton condensates in the strong coupling limit. Nat. Nanotechnol. 17, 577–582 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing